Cargando…
True Zero-Training Brain-Computer Interfacing – An Online Study
Despite several approaches to realize subject-to-subject transfer of pre-trained classifiers, the full performance of a Brain-Computer Interface (BCI) for a novel user can only be reached by presenting the BCI system with data from the novel user. In typical state-of-the-art BCI systems with a super...
Autores principales: | Kindermans, Pieter-Jan, Schreuder, Martijn, Schrauwen, Benjamin, Müller, Klaus-Robert, Tangermann, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113217/ https://www.ncbi.nlm.nih.gov/pubmed/25068464 http://dx.doi.org/10.1371/journal.pone.0102504 |
Ejemplares similares
-
Towards Zero Training for Brain-Computer Interfacing
por: Krauledat, Matthias, et al.
Publicado: (2008) -
Learning from label proportions in brain-computer interfaces: Online unsupervised learning with guarantees
por: Hübner, David, et al.
Publicado: (2017) -
A New Auditory Multi-Class Brain-Computer Interface Paradigm: Spatial Hearing as an Informative Cue
por: Schreuder, Martijn, et al.
Publicado: (2010) -
A Bayesian Model for Exploiting Application Constraints to Enable Unsupervised Training of a P300-based BCI
por: Kindermans, Pieter-Jan, et al.
Publicado: (2012) -
Listen, You are Writing! Speeding up Online Spelling with a Dynamic Auditory BCI
por: Schreuder, Martijn, et al.
Publicado: (2011)