Cargando…
The Effect of Polyunsaturated Aldehydes on Skeletonema marinoi (Bacillariophyceae): The Involvement of Reactive Oxygen Species and Nitric Oxide
Nitric oxide (NO) and reactive oxygen species (ROS) production was investigated in the marine diatom, Skeletonema marinoi (SM), exposed to 2E,4E/Z-decadienal (DECA), 2E,4E/Z-octadienal (OCTA), 2E,4E/Z-heptadienal (HEPTA) and a mix of these last two (MIX). When exposed to polyunsaturated aldehydes (P...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113821/ https://www.ncbi.nlm.nih.gov/pubmed/25026265 http://dx.doi.org/10.3390/md12074165 |
_version_ | 1782328349760159744 |
---|---|
author | Gallina, Alessandra A. Brunet, Christophe Palumbo, Anna Casotti, Raffaella |
author_facet | Gallina, Alessandra A. Brunet, Christophe Palumbo, Anna Casotti, Raffaella |
author_sort | Gallina, Alessandra A. |
collection | PubMed |
description | Nitric oxide (NO) and reactive oxygen species (ROS) production was investigated in the marine diatom, Skeletonema marinoi (SM), exposed to 2E,4E/Z-decadienal (DECA), 2E,4E/Z-octadienal (OCTA), 2E,4E/Z-heptadienal (HEPTA) and a mix of these last two (MIX). When exposed to polyunsaturated aldehydes (PUA), a decrease of NO was observed, proportional to the PUA concentration (85% of the initial level after 180 min with 66 µM DECA). Only OCTA, HEPTA and MIX induced a parallel increase of ROS, the highest (2.9-times the control) with OCTA concentrations twice the EC(50) for growth at 24 h (20 μM). The synthesis of carotenoids belonging to the xanthophyll cycle (XC) was enhanced during exposure, suggesting their antioxidant activity. Our data provide evidence that specific pathways exist as a reaction to PUA and that they depend upon the PUA used and/or the diatom species. In fact, Phaeodactylum tricornutum (PT) produces NO in response to DECA, but not to OCTA. We advance the hypothesis that SM perceives OCTA and HEPTA as intra-population infochemicals (as it produces PUA), while PT (non-PUA producing species) perceives them as allelochemicals. The ability to produce and to use PUA as infochemicals may underlie ecological traits of different diatom species and modulate ecological success in natural communities. |
format | Online Article Text |
id | pubmed-4113821 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-41138212014-07-29 The Effect of Polyunsaturated Aldehydes on Skeletonema marinoi (Bacillariophyceae): The Involvement of Reactive Oxygen Species and Nitric Oxide Gallina, Alessandra A. Brunet, Christophe Palumbo, Anna Casotti, Raffaella Mar Drugs Article Nitric oxide (NO) and reactive oxygen species (ROS) production was investigated in the marine diatom, Skeletonema marinoi (SM), exposed to 2E,4E/Z-decadienal (DECA), 2E,4E/Z-octadienal (OCTA), 2E,4E/Z-heptadienal (HEPTA) and a mix of these last two (MIX). When exposed to polyunsaturated aldehydes (PUA), a decrease of NO was observed, proportional to the PUA concentration (85% of the initial level after 180 min with 66 µM DECA). Only OCTA, HEPTA and MIX induced a parallel increase of ROS, the highest (2.9-times the control) with OCTA concentrations twice the EC(50) for growth at 24 h (20 μM). The synthesis of carotenoids belonging to the xanthophyll cycle (XC) was enhanced during exposure, suggesting their antioxidant activity. Our data provide evidence that specific pathways exist as a reaction to PUA and that they depend upon the PUA used and/or the diatom species. In fact, Phaeodactylum tricornutum (PT) produces NO in response to DECA, but not to OCTA. We advance the hypothesis that SM perceives OCTA and HEPTA as intra-population infochemicals (as it produces PUA), while PT (non-PUA producing species) perceives them as allelochemicals. The ability to produce and to use PUA as infochemicals may underlie ecological traits of different diatom species and modulate ecological success in natural communities. MDPI 2014-07-14 /pmc/articles/PMC4113821/ /pubmed/25026265 http://dx.doi.org/10.3390/md12074165 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Gallina, Alessandra A. Brunet, Christophe Palumbo, Anna Casotti, Raffaella The Effect of Polyunsaturated Aldehydes on Skeletonema marinoi (Bacillariophyceae): The Involvement of Reactive Oxygen Species and Nitric Oxide |
title | The Effect of Polyunsaturated Aldehydes on Skeletonema marinoi (Bacillariophyceae): The Involvement of Reactive Oxygen Species and Nitric Oxide |
title_full | The Effect of Polyunsaturated Aldehydes on Skeletonema marinoi (Bacillariophyceae): The Involvement of Reactive Oxygen Species and Nitric Oxide |
title_fullStr | The Effect of Polyunsaturated Aldehydes on Skeletonema marinoi (Bacillariophyceae): The Involvement of Reactive Oxygen Species and Nitric Oxide |
title_full_unstemmed | The Effect of Polyunsaturated Aldehydes on Skeletonema marinoi (Bacillariophyceae): The Involvement of Reactive Oxygen Species and Nitric Oxide |
title_short | The Effect of Polyunsaturated Aldehydes on Skeletonema marinoi (Bacillariophyceae): The Involvement of Reactive Oxygen Species and Nitric Oxide |
title_sort | effect of polyunsaturated aldehydes on skeletonema marinoi (bacillariophyceae): the involvement of reactive oxygen species and nitric oxide |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113821/ https://www.ncbi.nlm.nih.gov/pubmed/25026265 http://dx.doi.org/10.3390/md12074165 |
work_keys_str_mv | AT gallinaalessandraa theeffectofpolyunsaturatedaldehydesonskeletonemamarinoibacillariophyceaetheinvolvementofreactiveoxygenspeciesandnitricoxide AT brunetchristophe theeffectofpolyunsaturatedaldehydesonskeletonemamarinoibacillariophyceaetheinvolvementofreactiveoxygenspeciesandnitricoxide AT palumboanna theeffectofpolyunsaturatedaldehydesonskeletonemamarinoibacillariophyceaetheinvolvementofreactiveoxygenspeciesandnitricoxide AT casottiraffaella theeffectofpolyunsaturatedaldehydesonskeletonemamarinoibacillariophyceaetheinvolvementofreactiveoxygenspeciesandnitricoxide AT gallinaalessandraa effectofpolyunsaturatedaldehydesonskeletonemamarinoibacillariophyceaetheinvolvementofreactiveoxygenspeciesandnitricoxide AT brunetchristophe effectofpolyunsaturatedaldehydesonskeletonemamarinoibacillariophyceaetheinvolvementofreactiveoxygenspeciesandnitricoxide AT palumboanna effectofpolyunsaturatedaldehydesonskeletonemamarinoibacillariophyceaetheinvolvementofreactiveoxygenspeciesandnitricoxide AT casottiraffaella effectofpolyunsaturatedaldehydesonskeletonemamarinoibacillariophyceaetheinvolvementofreactiveoxygenspeciesandnitricoxide |