Cargando…

Understanding Nanocalcification: A Role Suggested for Crystal Ghosts

The present survey deals with the initial stage of the calcification process in bone and other hard tissues, with special reference to the organic-inorganic relationship and the transformation that the early inorganic particles undergo as the process moves towards completion. Electron microscope stu...

Descripción completa

Detalles Bibliográficos
Autor principal: Bonucci, Ermanno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113825/
https://www.ncbi.nlm.nih.gov/pubmed/25056630
http://dx.doi.org/10.3390/md12074231
Descripción
Sumario:The present survey deals with the initial stage of the calcification process in bone and other hard tissues, with special reference to the organic-inorganic relationship and the transformation that the early inorganic particles undergo as the process moves towards completion. Electron microscope studies clearly exclude the possibility that these particles might be crystalline structures, as often believed, by showing that they are, instead, organic-inorganic hybrids, each comprising a filamentous organic component (the crystal ghost) made up of acidic proteins. The hypothesis is suggested that the crystal ghosts bind and stabilize amorphous calcium phosphate and that their subsequent degradation allows the calcium phosphate, once released, to acquire a hydroxyapatite, crystal-like organization. A conclusive view of the mechanism of biological calcification cannot yet be proposed; even so, however, the role of crystal ghosts as a template of the structures usually called “crystallites” is a concept that has gathered increasing support and can no longer be disregarded.