Cargando…
Leishmania major possesses a unique HemG-type protoporphyrinogen IX oxidase
Leishmania major was proposed to either utilize haem from its host or partially synthesize the tetrapyrrole from host provided precursors. However, only indirect evidence was available for this partial late haem biosynthetic pathway. Here, we demonstrate that the LMJF_06_1280 gene of L. major encode...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114063/ https://www.ncbi.nlm.nih.gov/pubmed/24962471 http://dx.doi.org/10.1042/BSR20140081 |
Sumario: | Leishmania major was proposed to either utilize haem from its host or partially synthesize the tetrapyrrole from host provided precursors. However, only indirect evidence was available for this partial late haem biosynthetic pathway. Here, we demonstrate that the LMJF_06_1280 gene of L. major encodes a HemG-type PPO (protoporphyrinogen IX oxidase) catalysing the oxidation of protoporphyrinogen IX to protoporphyrin IX. Interestingly, trypanosomatids are currently the only known eukaryotes possessing HemG-type enzymes. The LMJF_06_1280 gene forms a potential transcriptional unit with LMJF_06_1270 encoding CPO (coproporphyrinogen III oxidase) and with LMJF_06_1290 for a cytochrome b(5). In vivo function of the L. major hemG gene was shown by the functional complementation of the Escherichia coli ΔhemG strain LG285. Restored haem formation in E. coli was observed using HPLC analyses. Purified recombinant L. major HemG revealed PPO activity in vitro using different ubiquinones and triphenyltetrazolium as electron acceptors. FMN was identified as the L. major HemG cofactor. Active site residues were found to be essential for HemG catalysis. These data in combination with the solved crystal structures of L. major CPO and the physiological proof of a ferrochelatase activity provide clear-cut evidence for a partial haem biosynthetic pathway in L. major. |
---|