Cargando…
On the generalizability of resting-state fMRI machine learning classifiers
Machine learning classifiers have become increasingly popular tools to generate single-subject inferences from fMRI data. With this transition from the traditional group level difference investigations to single-subject inference, the application of machine learning methods can be seen as a consider...
Autores principales: | Huf, Wolfgang, Kalcher, Klaudius, Boubela, Roland N., Rath, Georg, Vecsei, Andreas, Filzmoser, Peter, Moser, Ewald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114329/ https://www.ncbi.nlm.nih.gov/pubmed/25120443 http://dx.doi.org/10.3389/fnhum.2014.00502 |
Ejemplares similares
-
Beyond Noise: Using Temporal ICA to Extract Meaningful Information from High-Frequency fMRI Signal Fluctuations during Rest
por: Boubela, Roland N., et al.
Publicado: (2013) -
Big Data Approaches for the Analysis of Large-Scale fMRI Data Using Apache Spark and GPU Processing: A Demonstration on Resting-State fMRI Data from the Human Connectome Project
por: Boubela, Roland N., et al.
Publicado: (2016) -
Identification of Voxels Confounded by Venous Signals Using Resting-State fMRI Functional Connectivity Graph Community Identification
por: Kalcher, Klaudius, et al.
Publicado: (2015) -
RESCALE: Voxel-specific task-fMRI scaling using resting state fluctuation amplitude
por: Kalcher, Klaudius, et al.
Publicado: (2013) -
fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions
por: Boubela, Roland N., et al.
Publicado: (2015)