Cargando…

NUP214 fusion genes in acute leukemia (Review)

Nucleoporin 214 (NUP214), previously termed CAN, is required for cell cycle and nucleocytoplasmic transport. The genetic features and clinical implications of five NUP214-associated fusion genes are described in this review. SET-NUP214 was most frequently observed in T-cell acute lymphoblastic leuke...

Descripción completa

Detalles Bibliográficos
Autores principales: ZHOU, MIN-HANG, YANG, QING-MING
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114590/
https://www.ncbi.nlm.nih.gov/pubmed/25120641
http://dx.doi.org/10.3892/ol.2014.2263
Descripción
Sumario:Nucleoporin 214 (NUP214), previously termed CAN, is required for cell cycle and nucleocytoplasmic transport. The genetic features and clinical implications of five NUP214-associated fusion genes are described in this review. SET-NUP214 was most frequently observed in T-cell acute lymphoblastic leukemia (T-ALL), concomitant with the elevated expression of HOXA cluster genes. Furthermore, the fusion transcript may be regarded as a potential minimal residual disease marker for SET-NUP214-positive patients. Episomal amplifications of NUP214-ABL1 are specific to T-ALL patients. The NUP214-ABL1 gene is observed in ~6% of T-ALL, in children and adults. Targeted tyrosine kinase inhibitors plus standard chemotherapy appear to present a promising treatment strategy. DEK-NUP214 is formed by the fusion of exon 2 of DEK and exon 6 of NUP214. Achieving molecular negativity of DEK-NUP214 is of great importance for individual management. SQSTM1-NUP214 and NUP214-XKR3 were only identified in one T-ALL patient and one cell line, respectively. The NUP214 fusions have significant diagnostic and therapeutic implications for leukemia patients. Additional NUP214-associated fusions require identification in future studies.