Cargando…
Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity
Acid-sensing ion channel 1A (ASIC1A) is abundant in the nucleus accumbens (NAc), a region known for its role in addiction. Because ASIC1A has been previously suggested to promote associative learning, we hypothesized that disrupting ASIC1A in the NAc would reduce drug-associated learning and memory....
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115047/ https://www.ncbi.nlm.nih.gov/pubmed/24952644 http://dx.doi.org/10.1038/nn.3750 |
Sumario: | Acid-sensing ion channel 1A (ASIC1A) is abundant in the nucleus accumbens (NAc), a region known for its role in addiction. Because ASIC1A has been previously suggested to promote associative learning, we hypothesized that disrupting ASIC1A in the NAc would reduce drug-associated learning and memory. However, contrary to this hypothesis, we found that disrupting ASIC1A in the NAc increased cocaine-conditioned place preference, suggesting an unexpected role for ASIC1A in addiction-related behavior. Moreover, overexpressing ASIC1A in rat NAc reduced cocaine self-administration. Investigating the underlying mechanisms, we identified a novel postsynaptic current during neurotransmission mediated by ASIC1A and ASIC2 and thus well-positioned to regulate synapse structure and function. Consistent with this possibility, disrupting ASIC1A altered dendritic spine density and glutamate receptor function, and increased cocaine-evoked plasticity in AMPA-to-NMDA ratio, all resembling changes previously associated with cocaine-induced behavior. Together, these data suggest ASIC1A inhibits plasticity underlying addiction-related behavior, and raise the possibility of therapies for drug addiction by targeting ASIC-dependent neurotransmission. |
---|