Cargando…
The Drosophila agnostic Locus: Involvement in the Formation of Cognitive Defects in Williams Syndrome
The molecular basis of the pathological processes that lead to genome disorders is similar both in invertebrates and mammals. Since cognitive impairments in Williams syndrome are caused by LIMK1 hemizygosity, could the spontaneous and mutant variants of the Drosophila limk1 gene serve as a model for...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
A.I. Gordeyev
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115227/ https://www.ncbi.nlm.nih.gov/pubmed/25093112 |
_version_ | 1782328525719601152 |
---|---|
author | Nikitina, E. A. Medvedeva, A. V. Zakharov, G. A. Savvateeva-Popova, E. V. |
author_facet | Nikitina, E. A. Medvedeva, A. V. Zakharov, G. A. Savvateeva-Popova, E. V. |
author_sort | Nikitina, E. A. |
collection | PubMed |
description | The molecular basis of the pathological processes that lead to genome disorders is similar both in invertebrates and mammals. Since cognitive impairments in Williams syndrome are caused by LIMK1 hemizygosity, could the spontaneous and mutant variants of the Drosophila limk1 gene serve as a model for studying two diagnostic features from three distinct cognitive defects of the syndrome? These two symptoms are the disturbance of visuospatial orientation and an unusualy strong fixation on the faces of other people during pairwise interaction with a stranger. An experimental approach to the first cognitive manifestation might be an analysis of the locomotor behavior of Drosophila larvae involving visuospatial orientation during the exploration of the surrounding environment. An approach to tackle the second manifestation might be an analysis of the most natural ways of contact between a male and a female during courtship (the first stage of this ritual is the orientation of a male towards a female and following the female with constant fixation on the female’s image). The present study of locomotor activity and cognitive repertoire in spontaneous and mutant variants of the Drosophila agnostic locus allows one to bridge alterations in the structure of the limk1 gene and behavior. |
format | Online Article Text |
id | pubmed-4115227 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | A.I. Gordeyev |
record_format | MEDLINE/PubMed |
spelling | pubmed-41152272014-08-04 The Drosophila agnostic Locus: Involvement in the Formation of Cognitive Defects in Williams Syndrome Nikitina, E. A. Medvedeva, A. V. Zakharov, G. A. Savvateeva-Popova, E. V. Acta Naturae Research Article The molecular basis of the pathological processes that lead to genome disorders is similar both in invertebrates and mammals. Since cognitive impairments in Williams syndrome are caused by LIMK1 hemizygosity, could the spontaneous and mutant variants of the Drosophila limk1 gene serve as a model for studying two diagnostic features from three distinct cognitive defects of the syndrome? These two symptoms are the disturbance of visuospatial orientation and an unusualy strong fixation on the faces of other people during pairwise interaction with a stranger. An experimental approach to the first cognitive manifestation might be an analysis of the locomotor behavior of Drosophila larvae involving visuospatial orientation during the exploration of the surrounding environment. An approach to tackle the second manifestation might be an analysis of the most natural ways of contact between a male and a female during courtship (the first stage of this ritual is the orientation of a male towards a female and following the female with constant fixation on the female’s image). The present study of locomotor activity and cognitive repertoire in spontaneous and mutant variants of the Drosophila agnostic locus allows one to bridge alterations in the structure of the limk1 gene and behavior. A.I. Gordeyev 2014 /pmc/articles/PMC4115227/ /pubmed/25093112 Text en Copyright ® 2014 Park-media Ltd. http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Nikitina, E. A. Medvedeva, A. V. Zakharov, G. A. Savvateeva-Popova, E. V. The Drosophila agnostic Locus: Involvement in the Formation of Cognitive Defects in Williams Syndrome |
title | The Drosophila agnostic Locus: Involvement in the Formation of Cognitive Defects in Williams Syndrome |
title_full | The Drosophila agnostic Locus: Involvement in the Formation of Cognitive Defects in Williams Syndrome |
title_fullStr | The Drosophila agnostic Locus: Involvement in the Formation of Cognitive Defects in Williams Syndrome |
title_full_unstemmed | The Drosophila agnostic Locus: Involvement in the Formation of Cognitive Defects in Williams Syndrome |
title_short | The Drosophila agnostic Locus: Involvement in the Formation of Cognitive Defects in Williams Syndrome |
title_sort | drosophila agnostic locus: involvement in the formation of cognitive defects in williams syndrome |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115227/ https://www.ncbi.nlm.nih.gov/pubmed/25093112 |
work_keys_str_mv | AT nikitinaea thedrosophilaagnosticlocusinvolvementintheformationofcognitivedefectsinwilliamssyndrome AT medvedevaav thedrosophilaagnosticlocusinvolvementintheformationofcognitivedefectsinwilliamssyndrome AT zakharovga thedrosophilaagnosticlocusinvolvementintheformationofcognitivedefectsinwilliamssyndrome AT savvateevapopovaev thedrosophilaagnosticlocusinvolvementintheformationofcognitivedefectsinwilliamssyndrome AT nikitinaea drosophilaagnosticlocusinvolvementintheformationofcognitivedefectsinwilliamssyndrome AT medvedevaav drosophilaagnosticlocusinvolvementintheformationofcognitivedefectsinwilliamssyndrome AT zakharovga drosophilaagnosticlocusinvolvementintheformationofcognitivedefectsinwilliamssyndrome AT savvateevapopovaev drosophilaagnosticlocusinvolvementintheformationofcognitivedefectsinwilliamssyndrome |