Cargando…
Analysis of sampling artifacts on the Granger causality analysis for topology extraction of neuronal dynamics
Granger causality (GC) is a powerful method for causal inference for time series. In general, the GC value is computed using discrete time series sampled from continuous-time processes with a certain sampling interval length τ, i.e., the GC value is a function of τ. Using the GC analysis for the top...
Autores principales: | Zhou, Douglas, Zhang, Yaoyu, Xiao, Yanyang, Cai, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115622/ https://www.ncbi.nlm.nih.gov/pubmed/25126067 http://dx.doi.org/10.3389/fncom.2014.00075 |
Ejemplares similares
-
Granger Causality Network Reconstruction of Conductance-Based Integrate-and-Fire Neuronal Systems
por: Zhou, Douglas, et al.
Publicado: (2014) -
Granger causality analysis for calcium transients in neuronal networks, challenges and improvements
por: Chen, Xiaowen, et al.
Publicado: (2023) -
New Insights into Signed Path Coefficient Granger Causality Analysis
por: Zhang, Jian, et al.
Publicado: (2016) -
Granger causality is designed to measure effect, not mechanism
por: Barrett, Adam B., et al.
Publicado: (2013) -
Neural Connectivity in Epilepsy as Measured by Granger Causality
por: Coben, Robert, et al.
Publicado: (2015)