Cargando…
A Computational Approach towards a Gene Regulatory Network for the Developing Nematostella vectensis Gut
BACKGROUND: The starlet sea anemone Nematostella vectensis is a diploblastic cnidarian that expresses a set of conserved genes for gut formation during its early development. During the last decade, the spatial distribution of many of these genes has been visualized with RNA hybridization or protein...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116165/ https://www.ncbi.nlm.nih.gov/pubmed/25076223 http://dx.doi.org/10.1371/journal.pone.0103341 |
_version_ | 1782328575138988032 |
---|---|
author | Botman, Daniel Röttinger, Eric Martindale, Mark Q. de Jong, Johann Kaandorp, Jaap A. |
author_facet | Botman, Daniel Röttinger, Eric Martindale, Mark Q. de Jong, Johann Kaandorp, Jaap A. |
author_sort | Botman, Daniel |
collection | PubMed |
description | BACKGROUND: The starlet sea anemone Nematostella vectensis is a diploblastic cnidarian that expresses a set of conserved genes for gut formation during its early development. During the last decade, the spatial distribution of many of these genes has been visualized with RNA hybridization or protein immunolocalization techniques. However, due to N. vectensis' curved and changing morphology, quantification of these spatial data is problematic. A method is developed for two-dimensional gene expression quantification, which enables a numerical analysis and dynamic modeling of these spatial patterns. METHODS/RESULT: In this work, first standardized gene expression profiles are generated from publicly available N. vectensis embryo images that display mRNA and/or protein distributions. Then, genes expressed during gut formation are clustered based on their expression profiles, and further grouped based on temporal appearance of their gene products in embryonic development. Representative expression profiles are manually selected from these clusters, and used as input for a simulation-based optimization scheme. This scheme iteratively fits simulated profiles to the selected profiles, leading to an optimized estimation of the model parameters. Finally, a preliminary gene regulatory network is derived from the optimized model parameters. OUTLOOK: While the focus of this study is N. vectensis, the approach outlined here is suitable for inferring gene regulatory networks in the embryonic development of any animal, thus allowing to comparatively study gene regulation of gut formation in silico across various species. |
format | Online Article Text |
id | pubmed-4116165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41161652014-08-04 A Computational Approach towards a Gene Regulatory Network for the Developing Nematostella vectensis Gut Botman, Daniel Röttinger, Eric Martindale, Mark Q. de Jong, Johann Kaandorp, Jaap A. PLoS One Research Article BACKGROUND: The starlet sea anemone Nematostella vectensis is a diploblastic cnidarian that expresses a set of conserved genes for gut formation during its early development. During the last decade, the spatial distribution of many of these genes has been visualized with RNA hybridization or protein immunolocalization techniques. However, due to N. vectensis' curved and changing morphology, quantification of these spatial data is problematic. A method is developed for two-dimensional gene expression quantification, which enables a numerical analysis and dynamic modeling of these spatial patterns. METHODS/RESULT: In this work, first standardized gene expression profiles are generated from publicly available N. vectensis embryo images that display mRNA and/or protein distributions. Then, genes expressed during gut formation are clustered based on their expression profiles, and further grouped based on temporal appearance of their gene products in embryonic development. Representative expression profiles are manually selected from these clusters, and used as input for a simulation-based optimization scheme. This scheme iteratively fits simulated profiles to the selected profiles, leading to an optimized estimation of the model parameters. Finally, a preliminary gene regulatory network is derived from the optimized model parameters. OUTLOOK: While the focus of this study is N. vectensis, the approach outlined here is suitable for inferring gene regulatory networks in the embryonic development of any animal, thus allowing to comparatively study gene regulation of gut formation in silico across various species. Public Library of Science 2014-07-30 /pmc/articles/PMC4116165/ /pubmed/25076223 http://dx.doi.org/10.1371/journal.pone.0103341 Text en © 2014 Botman et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Botman, Daniel Röttinger, Eric Martindale, Mark Q. de Jong, Johann Kaandorp, Jaap A. A Computational Approach towards a Gene Regulatory Network for the Developing Nematostella vectensis Gut |
title | A Computational Approach towards a Gene Regulatory Network for the Developing Nematostella vectensis Gut |
title_full | A Computational Approach towards a Gene Regulatory Network for the Developing Nematostella vectensis Gut |
title_fullStr | A Computational Approach towards a Gene Regulatory Network for the Developing Nematostella vectensis Gut |
title_full_unstemmed | A Computational Approach towards a Gene Regulatory Network for the Developing Nematostella vectensis Gut |
title_short | A Computational Approach towards a Gene Regulatory Network for the Developing Nematostella vectensis Gut |
title_sort | computational approach towards a gene regulatory network for the developing nematostella vectensis gut |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116165/ https://www.ncbi.nlm.nih.gov/pubmed/25076223 http://dx.doi.org/10.1371/journal.pone.0103341 |
work_keys_str_mv | AT botmandaniel acomputationalapproachtowardsageneregulatorynetworkforthedevelopingnematostellavectensisgut AT rottingereric acomputationalapproachtowardsageneregulatorynetworkforthedevelopingnematostellavectensisgut AT martindalemarkq acomputationalapproachtowardsageneregulatorynetworkforthedevelopingnematostellavectensisgut AT dejongjohann acomputationalapproachtowardsageneregulatorynetworkforthedevelopingnematostellavectensisgut AT kaandorpjaapa acomputationalapproachtowardsageneregulatorynetworkforthedevelopingnematostellavectensisgut AT botmandaniel computationalapproachtowardsageneregulatorynetworkforthedevelopingnematostellavectensisgut AT rottingereric computationalapproachtowardsageneregulatorynetworkforthedevelopingnematostellavectensisgut AT martindalemarkq computationalapproachtowardsageneregulatorynetworkforthedevelopingnematostellavectensisgut AT dejongjohann computationalapproachtowardsageneregulatorynetworkforthedevelopingnematostellavectensisgut AT kaandorpjaapa computationalapproachtowardsageneregulatorynetworkforthedevelopingnematostellavectensisgut |