Cargando…
Maladjusted Host Immune Responses Induce Experimental Cerebral Malaria-Like Pathology in a Murine Borrelia and Plasmodium Co-Infection Model
In the Plasmodium infected host, a balance between pro- and anti-inflammatory responses is required to clear the parasites without inducing major host pathology. Clinical reports suggest that bacterial infection in conjunction with malaria aggravates disease and raises both mortality and morbidity i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116174/ https://www.ncbi.nlm.nih.gov/pubmed/25075973 http://dx.doi.org/10.1371/journal.pone.0103295 |
_version_ | 1782328577167982592 |
---|---|
author | Normark, Johan Nelson, Maria Engström, Patrik Andersson, Marie Björk, Rafael Moritz, Thomas Fahlgren, Anna Bergström, Sven |
author_facet | Normark, Johan Nelson, Maria Engström, Patrik Andersson, Marie Björk, Rafael Moritz, Thomas Fahlgren, Anna Bergström, Sven |
author_sort | Normark, Johan |
collection | PubMed |
description | In the Plasmodium infected host, a balance between pro- and anti-inflammatory responses is required to clear the parasites without inducing major host pathology. Clinical reports suggest that bacterial infection in conjunction with malaria aggravates disease and raises both mortality and morbidity in these patients. In this study, we investigated the immune responses in BALB/c mice, co-infected with Plasmodium berghei NK65 parasites and the relapsing fever bacterium Borrelia duttonii. In contrast to single infections, we identified in the co-infected mice a reduction of L-Arginine levels in the serum. It indicated diminished bioavailability of NO, which argued for a dysfunctional endothelium. Consistent with this, we observed increased sequestration of CD8+ cells in the brain as well over expression of ICAM-1 and VCAM by brain endothelial cells. Co-infected mice further showed an increased inflammatory response through IL-1β and TNF-α, as well as inability to down regulate the same through IL-10. In addition we found loss of synchronicity of pro- and anti-inflammatory signals seen in dendritic cells and macrophages, as well as increased numbers of regulatory T-cells. Our study shows that a situation mimicking experimental cerebral malaria (ECM) is induced in co-infected mice due to loss of timing and control over regulatory mechanisms in antigen presenting cells. |
format | Online Article Text |
id | pubmed-4116174 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41161742014-08-04 Maladjusted Host Immune Responses Induce Experimental Cerebral Malaria-Like Pathology in a Murine Borrelia and Plasmodium Co-Infection Model Normark, Johan Nelson, Maria Engström, Patrik Andersson, Marie Björk, Rafael Moritz, Thomas Fahlgren, Anna Bergström, Sven PLoS One Research Article In the Plasmodium infected host, a balance between pro- and anti-inflammatory responses is required to clear the parasites without inducing major host pathology. Clinical reports suggest that bacterial infection in conjunction with malaria aggravates disease and raises both mortality and morbidity in these patients. In this study, we investigated the immune responses in BALB/c mice, co-infected with Plasmodium berghei NK65 parasites and the relapsing fever bacterium Borrelia duttonii. In contrast to single infections, we identified in the co-infected mice a reduction of L-Arginine levels in the serum. It indicated diminished bioavailability of NO, which argued for a dysfunctional endothelium. Consistent with this, we observed increased sequestration of CD8+ cells in the brain as well over expression of ICAM-1 and VCAM by brain endothelial cells. Co-infected mice further showed an increased inflammatory response through IL-1β and TNF-α, as well as inability to down regulate the same through IL-10. In addition we found loss of synchronicity of pro- and anti-inflammatory signals seen in dendritic cells and macrophages, as well as increased numbers of regulatory T-cells. Our study shows that a situation mimicking experimental cerebral malaria (ECM) is induced in co-infected mice due to loss of timing and control over regulatory mechanisms in antigen presenting cells. Public Library of Science 2014-07-30 /pmc/articles/PMC4116174/ /pubmed/25075973 http://dx.doi.org/10.1371/journal.pone.0103295 Text en © 2014 Normark et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Normark, Johan Nelson, Maria Engström, Patrik Andersson, Marie Björk, Rafael Moritz, Thomas Fahlgren, Anna Bergström, Sven Maladjusted Host Immune Responses Induce Experimental Cerebral Malaria-Like Pathology in a Murine Borrelia and Plasmodium Co-Infection Model |
title | Maladjusted Host Immune Responses Induce Experimental Cerebral Malaria-Like Pathology in a Murine Borrelia and Plasmodium Co-Infection Model |
title_full | Maladjusted Host Immune Responses Induce Experimental Cerebral Malaria-Like Pathology in a Murine Borrelia and Plasmodium Co-Infection Model |
title_fullStr | Maladjusted Host Immune Responses Induce Experimental Cerebral Malaria-Like Pathology in a Murine Borrelia and Plasmodium Co-Infection Model |
title_full_unstemmed | Maladjusted Host Immune Responses Induce Experimental Cerebral Malaria-Like Pathology in a Murine Borrelia and Plasmodium Co-Infection Model |
title_short | Maladjusted Host Immune Responses Induce Experimental Cerebral Malaria-Like Pathology in a Murine Borrelia and Plasmodium Co-Infection Model |
title_sort | maladjusted host immune responses induce experimental cerebral malaria-like pathology in a murine borrelia and plasmodium co-infection model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116174/ https://www.ncbi.nlm.nih.gov/pubmed/25075973 http://dx.doi.org/10.1371/journal.pone.0103295 |
work_keys_str_mv | AT normarkjohan maladjustedhostimmuneresponsesinduceexperimentalcerebralmalarialikepathologyinamurineborreliaandplasmodiumcoinfectionmodel AT nelsonmaria maladjustedhostimmuneresponsesinduceexperimentalcerebralmalarialikepathologyinamurineborreliaandplasmodiumcoinfectionmodel AT engstrompatrik maladjustedhostimmuneresponsesinduceexperimentalcerebralmalarialikepathologyinamurineborreliaandplasmodiumcoinfectionmodel AT anderssonmarie maladjustedhostimmuneresponsesinduceexperimentalcerebralmalarialikepathologyinamurineborreliaandplasmodiumcoinfectionmodel AT bjorkrafael maladjustedhostimmuneresponsesinduceexperimentalcerebralmalarialikepathologyinamurineborreliaandplasmodiumcoinfectionmodel AT moritzthomas maladjustedhostimmuneresponsesinduceexperimentalcerebralmalarialikepathologyinamurineborreliaandplasmodiumcoinfectionmodel AT fahlgrenanna maladjustedhostimmuneresponsesinduceexperimentalcerebralmalarialikepathologyinamurineborreliaandplasmodiumcoinfectionmodel AT bergstromsven maladjustedhostimmuneresponsesinduceexperimentalcerebralmalarialikepathologyinamurineborreliaandplasmodiumcoinfectionmodel |