Cargando…

High-Accuracy Brain-Machine Interfaces Using Feedback Information

Sensory feedback is very important for movement control. However, feedback information has not been directly used to update movement prediction model in the previous BMI studies, although the closed-loop BMI system provides the visual feedback to users. Here, we propose a BMI framework combining ima...

Descripción completa

Detalles Bibliográficos
Autores principales: Yeom, Hong Gi, Kim, June Sic, Chung, Chun Kee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116198/
https://www.ncbi.nlm.nih.gov/pubmed/25076487
http://dx.doi.org/10.1371/journal.pone.0103539
Descripción
Sumario:Sensory feedback is very important for movement control. However, feedback information has not been directly used to update movement prediction model in the previous BMI studies, although the closed-loop BMI system provides the visual feedback to users. Here, we propose a BMI framework combining image processing as the feedback information with a novel prediction method. The feedback-prediction algorithm (FPA) generates feedback information from the positions of objects and modifies movement prediction according to the information. The FPA predicts a target among objects based on the movement direction predicted from the neural activity. After the target selection, the FPA modifies the predicted direction toward the target and modulates the magnitude of the predicted vector to easily reach the target. The FPA repeats the modification in every prediction time points. To evaluate the improvements of prediction accuracy provided by the feedback, we compared the prediction performances with feedback (FPA) and without feedback. We demonstrated that accuracy of movement prediction can be considerably improved by the FPA combining feedback information. The accuracy of the movement prediction was significantly improved for all subjects (P<0.001) and 32.1% of the mean error was reduced. The BMI performance will be improved by combining feedback information and it will promote the development of a practical BMI system.