Cargando…
The Coding and Noncoding Architecture of the Caulobacter crescentus Genome
Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5′-RACE, and liquid chromatography couple...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117421/ https://www.ncbi.nlm.nih.gov/pubmed/25078267 http://dx.doi.org/10.1371/journal.pgen.1004463 |
_version_ | 1782328691254099968 |
---|---|
author | Schrader, Jared M. Zhou, Bo Li, Gene-Wei Lasker, Keren Childers, W. Seth Williams, Brandon Long, Tao Crosson, Sean McAdams, Harley H. Weissman, Jonathan S. Shapiro, Lucy |
author_facet | Schrader, Jared M. Zhou, Bo Li, Gene-Wei Lasker, Keren Childers, W. Seth Williams, Brandon Long, Tao Crosson, Sean McAdams, Harley H. Weissman, Jonathan S. Shapiro, Lucy |
author_sort | Schrader, Jared M. |
collection | PubMed |
description | Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5′-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5′-RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the coding DNA sequence (CDS). These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach, providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division. |
format | Online Article Text |
id | pubmed-4117421 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41174212014-08-04 The Coding and Noncoding Architecture of the Caulobacter crescentus Genome Schrader, Jared M. Zhou, Bo Li, Gene-Wei Lasker, Keren Childers, W. Seth Williams, Brandon Long, Tao Crosson, Sean McAdams, Harley H. Weissman, Jonathan S. Shapiro, Lucy PLoS Genet Research Article Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5′-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5′-RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the coding DNA sequence (CDS). These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach, providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division. Public Library of Science 2014-07-31 /pmc/articles/PMC4117421/ /pubmed/25078267 http://dx.doi.org/10.1371/journal.pgen.1004463 Text en © 2014 Schrader et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Schrader, Jared M. Zhou, Bo Li, Gene-Wei Lasker, Keren Childers, W. Seth Williams, Brandon Long, Tao Crosson, Sean McAdams, Harley H. Weissman, Jonathan S. Shapiro, Lucy The Coding and Noncoding Architecture of the Caulobacter crescentus Genome |
title | The Coding and Noncoding Architecture of the Caulobacter crescentus Genome |
title_full | The Coding and Noncoding Architecture of the Caulobacter crescentus Genome |
title_fullStr | The Coding and Noncoding Architecture of the Caulobacter crescentus Genome |
title_full_unstemmed | The Coding and Noncoding Architecture of the Caulobacter crescentus Genome |
title_short | The Coding and Noncoding Architecture of the Caulobacter crescentus Genome |
title_sort | coding and noncoding architecture of the caulobacter crescentus genome |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117421/ https://www.ncbi.nlm.nih.gov/pubmed/25078267 http://dx.doi.org/10.1371/journal.pgen.1004463 |
work_keys_str_mv | AT schraderjaredm thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome AT zhoubo thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome AT ligenewei thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome AT laskerkeren thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome AT childerswseth thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome AT williamsbrandon thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome AT longtao thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome AT crossonsean thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome AT mcadamsharleyh thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome AT weissmanjonathans thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome AT shapirolucy thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome AT schraderjaredm codingandnoncodingarchitectureofthecaulobactercrescentusgenome AT zhoubo codingandnoncodingarchitectureofthecaulobactercrescentusgenome AT ligenewei codingandnoncodingarchitectureofthecaulobactercrescentusgenome AT laskerkeren codingandnoncodingarchitectureofthecaulobactercrescentusgenome AT childerswseth codingandnoncodingarchitectureofthecaulobactercrescentusgenome AT williamsbrandon codingandnoncodingarchitectureofthecaulobactercrescentusgenome AT longtao codingandnoncodingarchitectureofthecaulobactercrescentusgenome AT crossonsean codingandnoncodingarchitectureofthecaulobactercrescentusgenome AT mcadamsharleyh codingandnoncodingarchitectureofthecaulobactercrescentusgenome AT weissmanjonathans codingandnoncodingarchitectureofthecaulobactercrescentusgenome AT shapirolucy codingandnoncodingarchitectureofthecaulobactercrescentusgenome |