Cargando…

The Coding and Noncoding Architecture of the Caulobacter crescentus Genome

Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5′-RACE, and liquid chromatography couple...

Descripción completa

Detalles Bibliográficos
Autores principales: Schrader, Jared M., Zhou, Bo, Li, Gene-Wei, Lasker, Keren, Childers, W. Seth, Williams, Brandon, Long, Tao, Crosson, Sean, McAdams, Harley H., Weissman, Jonathan S., Shapiro, Lucy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117421/
https://www.ncbi.nlm.nih.gov/pubmed/25078267
http://dx.doi.org/10.1371/journal.pgen.1004463
_version_ 1782328691254099968
author Schrader, Jared M.
Zhou, Bo
Li, Gene-Wei
Lasker, Keren
Childers, W. Seth
Williams, Brandon
Long, Tao
Crosson, Sean
McAdams, Harley H.
Weissman, Jonathan S.
Shapiro, Lucy
author_facet Schrader, Jared M.
Zhou, Bo
Li, Gene-Wei
Lasker, Keren
Childers, W. Seth
Williams, Brandon
Long, Tao
Crosson, Sean
McAdams, Harley H.
Weissman, Jonathan S.
Shapiro, Lucy
author_sort Schrader, Jared M.
collection PubMed
description Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5′-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5′-RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the coding DNA sequence (CDS). These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach, providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division.
format Online
Article
Text
id pubmed-4117421
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41174212014-08-04 The Coding and Noncoding Architecture of the Caulobacter crescentus Genome Schrader, Jared M. Zhou, Bo Li, Gene-Wei Lasker, Keren Childers, W. Seth Williams, Brandon Long, Tao Crosson, Sean McAdams, Harley H. Weissman, Jonathan S. Shapiro, Lucy PLoS Genet Research Article Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5′-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5′-RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the coding DNA sequence (CDS). These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach, providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division. Public Library of Science 2014-07-31 /pmc/articles/PMC4117421/ /pubmed/25078267 http://dx.doi.org/10.1371/journal.pgen.1004463 Text en © 2014 Schrader et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Schrader, Jared M.
Zhou, Bo
Li, Gene-Wei
Lasker, Keren
Childers, W. Seth
Williams, Brandon
Long, Tao
Crosson, Sean
McAdams, Harley H.
Weissman, Jonathan S.
Shapiro, Lucy
The Coding and Noncoding Architecture of the Caulobacter crescentus Genome
title The Coding and Noncoding Architecture of the Caulobacter crescentus Genome
title_full The Coding and Noncoding Architecture of the Caulobacter crescentus Genome
title_fullStr The Coding and Noncoding Architecture of the Caulobacter crescentus Genome
title_full_unstemmed The Coding and Noncoding Architecture of the Caulobacter crescentus Genome
title_short The Coding and Noncoding Architecture of the Caulobacter crescentus Genome
title_sort coding and noncoding architecture of the caulobacter crescentus genome
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117421/
https://www.ncbi.nlm.nih.gov/pubmed/25078267
http://dx.doi.org/10.1371/journal.pgen.1004463
work_keys_str_mv AT schraderjaredm thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT zhoubo thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT ligenewei thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT laskerkeren thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT childerswseth thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT williamsbrandon thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT longtao thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT crossonsean thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT mcadamsharleyh thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT weissmanjonathans thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT shapirolucy thecodingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT schraderjaredm codingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT zhoubo codingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT ligenewei codingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT laskerkeren codingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT childerswseth codingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT williamsbrandon codingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT longtao codingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT crossonsean codingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT mcadamsharleyh codingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT weissmanjonathans codingandnoncodingarchitectureofthecaulobactercrescentusgenome
AT shapirolucy codingandnoncodingarchitectureofthecaulobactercrescentusgenome