Cargando…

CstF-64 supports pluripotency and regulates cell cycle progression in embryonic stem cells through histone 3′ end processing

Embryonic stem cells (ESCs) exhibit a unique cell cycle with a shortened G(1) phase that supports their pluripotency, while apparently buffering them against pro-differentiation stimuli. In ESCs, expression of replication-dependent histones is a main component of this abbreviated G(1) phase, althoug...

Descripción completa

Detalles Bibliográficos
Autores principales: Youngblood, Bradford A., Grozdanov, Petar N., MacDonald, Clinton C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117776/
https://www.ncbi.nlm.nih.gov/pubmed/24957598
http://dx.doi.org/10.1093/nar/gku551
Descripción
Sumario:Embryonic stem cells (ESCs) exhibit a unique cell cycle with a shortened G(1) phase that supports their pluripotency, while apparently buffering them against pro-differentiation stimuli. In ESCs, expression of replication-dependent histones is a main component of this abbreviated G(1) phase, although the details of this mechanism are not well understood. Similarly, the role of 3′ end processing in regulation of ESC pluripotency and cell cycle is poorly understood. To better understand these processes, we examined mouse ESCs that lack the 3′ end-processing factor CstF-64. These ESCs display slower growth, loss of pluripotency and a lengthened G(1) phase, correlating with increased polyadenylation of histone mRNAs. Interestingly, these ESCs also express the τCstF-64 paralog of CstF-64. However, τCstF-64 only partially compensates for lost CstF-64 function, despite being recruited to the histone mRNA 3′ end-processing complex. Reduction of τCstF-64 in CstF-64-deficient ESCs results in even greater levels of histone mRNA polyadenylation, suggesting that both CstF-64 and τCstF-64 function to inhibit polyadenylation of histone mRNAs. These results suggest that CstF-64 plays a key role in modulating the cell cycle in ESCs while simultaneously controlling histone mRNA 3′ end processing.