Cargando…
Atomistic Simulation of Tensile Deformation Behavior of ∑5 Tilt Grain Boundaries in Copper Bicrystal
Experiments on polycrystalline metallic samples have indicated that Grain boundary (GB) structure can affect many material properties related to fracture and plasticity. In this study, atomistic simulations are employed to investigate the structures and mechanical behavior of both symmetric and asym...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118255/ https://www.ncbi.nlm.nih.gov/pubmed/25082227 http://dx.doi.org/10.1038/srep05919 |
_version_ | 1782328814089535488 |
---|---|
author | Zhang, Liang Lu, Cheng Tieu, Kiet |
author_facet | Zhang, Liang Lu, Cheng Tieu, Kiet |
author_sort | Zhang, Liang |
collection | PubMed |
description | Experiments on polycrystalline metallic samples have indicated that Grain boundary (GB) structure can affect many material properties related to fracture and plasticity. In this study, atomistic simulations are employed to investigate the structures and mechanical behavior of both symmetric and asymmetric ∑5[0 0 1] tilt GBs of copper bicrystal. First, the equilibrium GB structures are generated by molecular statics simulation at 0K. The results show that the ∑5 asymmetric GBs with different inclination angles (φ) are composed of only two structural units corresponding to the two ∑5 symmetric GBs. Molecular dynamics simulations are then conducted to investigate the mechanical response and the underlying deformation mechanisms of bicrystal models with different ∑5 GBs under tension. Tensile deformation is applied under both ‘free’ and ‘constrained’ boundary conditions. Simulation results revealed different mechanical properties of the symmetric and asymmetric GBs and indicated that stress state can play an important role in the deformation mechanisms of nanocrystalline materials. |
format | Online Article Text |
id | pubmed-4118255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-41182552014-08-15 Atomistic Simulation of Tensile Deformation Behavior of ∑5 Tilt Grain Boundaries in Copper Bicrystal Zhang, Liang Lu, Cheng Tieu, Kiet Sci Rep Article Experiments on polycrystalline metallic samples have indicated that Grain boundary (GB) structure can affect many material properties related to fracture and plasticity. In this study, atomistic simulations are employed to investigate the structures and mechanical behavior of both symmetric and asymmetric ∑5[0 0 1] tilt GBs of copper bicrystal. First, the equilibrium GB structures are generated by molecular statics simulation at 0K. The results show that the ∑5 asymmetric GBs with different inclination angles (φ) are composed of only two structural units corresponding to the two ∑5 symmetric GBs. Molecular dynamics simulations are then conducted to investigate the mechanical response and the underlying deformation mechanisms of bicrystal models with different ∑5 GBs under tension. Tensile deformation is applied under both ‘free’ and ‘constrained’ boundary conditions. Simulation results revealed different mechanical properties of the symmetric and asymmetric GBs and indicated that stress state can play an important role in the deformation mechanisms of nanocrystalline materials. Nature Publishing Group 2014-08-01 /pmc/articles/PMC4118255/ /pubmed/25082227 http://dx.doi.org/10.1038/srep05919 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-sa/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ |
spellingShingle | Article Zhang, Liang Lu, Cheng Tieu, Kiet Atomistic Simulation of Tensile Deformation Behavior of ∑5 Tilt Grain Boundaries in Copper Bicrystal |
title | Atomistic Simulation of Tensile Deformation Behavior of ∑5 Tilt Grain Boundaries in Copper Bicrystal |
title_full | Atomistic Simulation of Tensile Deformation Behavior of ∑5 Tilt Grain Boundaries in Copper Bicrystal |
title_fullStr | Atomistic Simulation of Tensile Deformation Behavior of ∑5 Tilt Grain Boundaries in Copper Bicrystal |
title_full_unstemmed | Atomistic Simulation of Tensile Deformation Behavior of ∑5 Tilt Grain Boundaries in Copper Bicrystal |
title_short | Atomistic Simulation of Tensile Deformation Behavior of ∑5 Tilt Grain Boundaries in Copper Bicrystal |
title_sort | atomistic simulation of tensile deformation behavior of ∑5 tilt grain boundaries in copper bicrystal |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118255/ https://www.ncbi.nlm.nih.gov/pubmed/25082227 http://dx.doi.org/10.1038/srep05919 |
work_keys_str_mv | AT zhangliang atomisticsimulationoftensiledeformationbehaviorof5tiltgrainboundariesincopperbicrystal AT lucheng atomisticsimulationoftensiledeformationbehaviorof5tiltgrainboundariesincopperbicrystal AT tieukiet atomisticsimulationoftensiledeformationbehaviorof5tiltgrainboundariesincopperbicrystal |