Cargando…
Detecting Falls with Wearable Sensors Using Machine Learning Techniques
Falls are a serious public health problem and possibly life threatening for people in fall risk groups. We develop an automated fall detection system with wearable motion sensor units fitted to the subjects' body at six different positions. Each unit comprises three tri-axial devices (accelerom...
Autores principales: | Özdemir, Ahmet Turan, Barshan, Billur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118339/ https://www.ncbi.nlm.nih.gov/pubmed/24945676 http://dx.doi.org/10.3390/s140610691 |
Ejemplares similares
-
Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors
por: Yurtman, Aras, et al.
Publicado: (2017) -
An Analysis on Sensor Locations of the Human Body for Wearable Fall Detection Devices: Principles and Practice
por: Özdemir, Ahmet Turan
Publicado: (2016) -
Activity Recognition Invariant to Wearable Sensor Unit Orientation Using Differential Rotational Transformations Represented by Quaternions
por: Yurtman, Aras, et al.
Publicado: (2018) -
On the Comparison of Wearable Sensor Data Fusion to a Single Sensor Machine Learning Technique in Fall Detection
por: Tsinganos, Panagiotis, et al.
Publicado: (2018) -
Objective Error Criterion for Evaluation of Mapping Accuracy Based on Sensor Time-of-Flight Measurements
por: Barshan, Billur
Publicado: (2008)