Cargando…
Defect Profile Estimation from Magnetic Flux Leakage Signal via Efficient Managing Particle Swarm Optimization
In this paper, efficient managing particle swarm optimization (EMPSO) for high dimension problem is proposed to estimate defect profile from magnetic flux leakage (MFL) signal. In the proposed EMPSO, in order to strengthen exchange of information among particles, particle pair model was built. For m...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118418/ https://www.ncbi.nlm.nih.gov/pubmed/24926693 http://dx.doi.org/10.3390/s140610361 |
_version_ | 1782328845566738432 |
---|---|
author | Han, Wenhua Xu, Jun Wang, Ping Tian, Guiyun |
author_facet | Han, Wenhua Xu, Jun Wang, Ping Tian, Guiyun |
author_sort | Han, Wenhua |
collection | PubMed |
description | In this paper, efficient managing particle swarm optimization (EMPSO) for high dimension problem is proposed to estimate defect profile from magnetic flux leakage (MFL) signal. In the proposed EMPSO, in order to strengthen exchange of information among particles, particle pair model was built. For more efficient searching when facing different landscapes of problems, velocity updating scheme including three velocity updating models was also proposed. In addition, for more chances to search optimum solution out, automatic particle selection for re-initialization was implemented. The optimization results of six benchmark functions show EMPSO performs well when optimizing 100-D problems. The defect simulation results demonstrate that the inversing technique based on EMPSO outperforms the one based on self-learning particle swarm optimizer (SLPSO), and the estimated profiles are still close to the desired profiles with the presence of low noise in MFL signal. The results estimated from real MFL signal by EMPSO-based inversing technique also indicate that the algorithm is capable of providing an accurate solution of the defect profile with real signal. Both the simulation results and experiment results show the computing time of the EMPSO-based inversing technique is reduced by 20%–30% than that of the SLPSO-based inversing technique. |
format | Online Article Text |
id | pubmed-4118418 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-41184182014-08-01 Defect Profile Estimation from Magnetic Flux Leakage Signal via Efficient Managing Particle Swarm Optimization Han, Wenhua Xu, Jun Wang, Ping Tian, Guiyun Sensors (Basel) Article In this paper, efficient managing particle swarm optimization (EMPSO) for high dimension problem is proposed to estimate defect profile from magnetic flux leakage (MFL) signal. In the proposed EMPSO, in order to strengthen exchange of information among particles, particle pair model was built. For more efficient searching when facing different landscapes of problems, velocity updating scheme including three velocity updating models was also proposed. In addition, for more chances to search optimum solution out, automatic particle selection for re-initialization was implemented. The optimization results of six benchmark functions show EMPSO performs well when optimizing 100-D problems. The defect simulation results demonstrate that the inversing technique based on EMPSO outperforms the one based on self-learning particle swarm optimizer (SLPSO), and the estimated profiles are still close to the desired profiles with the presence of low noise in MFL signal. The results estimated from real MFL signal by EMPSO-based inversing technique also indicate that the algorithm is capable of providing an accurate solution of the defect profile with real signal. Both the simulation results and experiment results show the computing time of the EMPSO-based inversing technique is reduced by 20%–30% than that of the SLPSO-based inversing technique. MDPI 2014-06-12 /pmc/articles/PMC4118418/ /pubmed/24926693 http://dx.doi.org/10.3390/s140610361 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Han, Wenhua Xu, Jun Wang, Ping Tian, Guiyun Defect Profile Estimation from Magnetic Flux Leakage Signal via Efficient Managing Particle Swarm Optimization |
title | Defect Profile Estimation from Magnetic Flux Leakage Signal via Efficient Managing Particle Swarm Optimization |
title_full | Defect Profile Estimation from Magnetic Flux Leakage Signal via Efficient Managing Particle Swarm Optimization |
title_fullStr | Defect Profile Estimation from Magnetic Flux Leakage Signal via Efficient Managing Particle Swarm Optimization |
title_full_unstemmed | Defect Profile Estimation from Magnetic Flux Leakage Signal via Efficient Managing Particle Swarm Optimization |
title_short | Defect Profile Estimation from Magnetic Flux Leakage Signal via Efficient Managing Particle Swarm Optimization |
title_sort | defect profile estimation from magnetic flux leakage signal via efficient managing particle swarm optimization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118418/ https://www.ncbi.nlm.nih.gov/pubmed/24926693 http://dx.doi.org/10.3390/s140610361 |
work_keys_str_mv | AT hanwenhua defectprofileestimationfrommagneticfluxleakagesignalviaefficientmanagingparticleswarmoptimization AT xujun defectprofileestimationfrommagneticfluxleakagesignalviaefficientmanagingparticleswarmoptimization AT wangping defectprofileestimationfrommagneticfluxleakagesignalviaefficientmanagingparticleswarmoptimization AT tianguiyun defectprofileestimationfrommagneticfluxleakagesignalviaefficientmanagingparticleswarmoptimization |