Cargando…

Identification of the Microbiota in Carious Dentin Lesions Using 16S rRNA Gene Sequencing

While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Obata, Junko, Takeshita, Toru, Shibata, Yukie, Yamanaka, Wataru, Unemori, Masako, Akamine, Akifumi, Yamashita, Yoshihisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118920/
https://www.ncbi.nlm.nih.gov/pubmed/25083880
http://dx.doi.org/10.1371/journal.pone.0103712
Descripción
Sumario:While mutans streptococci have long been assumed to be the specific pathogen responsible for human dental caries, the concept of a complex dental caries-associated microbiota has received significant attention in recent years. Molecular analyses revealed the complexity of the microbiota with the predominance of Lactobacillus and Prevotella in carious dentine lesions. However, characterization of the dentin caries-associated microbiota has not been extensively explored in different ethnicities and races. In the present study, the bacterial communities in the carious dentin of Japanese subjects were analyzed comprehensively with molecular approaches using the16S rRNA gene. Carious dentin lesion samples were collected from 32 subjects aged 4–76 years, and the 16S rRNA genes, amplified from the extracted DNA with universal primers, were sequenced with a pyrosequencer. The bacterial composition was classified into clusters I, II, and III according to the relative abundance (high, middle, low) of Lactobacillus. The bacterial composition in cluster II was composed of relatively high proportions of Olsenella and Propionibacterium or subdominated by heterogeneous genera. The bacterial communities in cluster III were characterized by the predominance of Atopobium, Prevotella, or Propionibacterium with Streptococcus or Actinomyces. Some samples in clusters II and III, mainly related to Atopobium and Propionibacterium, were novel combinations of microbiota in carious dentin lesions and may be characteristic of the Japanese population. Clone library analysis revealed that Atopobium sp. HOT-416 and P. acidifaciens were specific species associated with dentinal caries among these genera in a Japanese population. We summarized the bacterial composition of dentinal carious lesions in a Japanese population using next-generation sequencing and found typical Japanese types with Atopobium or Propionibacterium predominating.