Cargando…

Nonlinear Mixed-Effects (NLME) Diameter Growth Models for Individual China-Fir (Cunninghamia lanceolata) Trees in Southeast China

An individual-tree diameter growth model was developed for Cunninghamia lanceolata in Fujian province, southeast China. Data were obtained from 72 plantation-grown China-fir trees in 24 single-species plots. Ordinary non-linear least squares regression was used to choose the best base model from amo...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Hao, Sun, Yujun, Wang, Xinjie, Fu, Yao, Dong, Yunfei, Li, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118969/
https://www.ncbi.nlm.nih.gov/pubmed/25084538
http://dx.doi.org/10.1371/journal.pone.0104012
Descripción
Sumario:An individual-tree diameter growth model was developed for Cunninghamia lanceolata in Fujian province, southeast China. Data were obtained from 72 plantation-grown China-fir trees in 24 single-species plots. Ordinary non-linear least squares regression was used to choose the best base model from among 5 theoretical growth equations; selection criteria were the smallest absolute mean residual and root mean square error and the largest adjusted coefficient of determination. To account for autocorrelation in the repeated-measures data, we developed one-level and nested two-level nonlinear mixed-effects (NLME) models, constructed on the selected base model; the NLME models incorporated random effects of the tree and plot. The best random-effects combinations for the NLME models were identified by Akaike's information criterion, Bayesian information criterion and −2 logarithm likelihood. Heteroscedasticity was reduced with two residual variance functions, a power function and an exponential function. The autocorrelation was addressed with three residual autocorrelation structures: a first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)] and a compound symmetry structure (CS). The one-level (tree) NLME model performed best. Independent validation data were used to test the performance of the models and to demonstrate the advantage of calibrating the NLME models.