Cargando…
Interaction between lidocaine hydrochloride (with and without adrenaline) and various irrigants: A nuclear magnetic resonance analysis
BACKGROUND: Interaction between local anesthetic solution, lidocaine hydrochloride (with and without adrenaline), and root canal irrigants such as sodium hypochlorite (NaOCl), ethylene diamine tetra-acetic acid (EDTA), and chlorhexidine (CHX) has not been studied earlier. Hence, the purpose of this...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119375/ https://www.ncbi.nlm.nih.gov/pubmed/25097652 |
_version_ | 1782328959809093632 |
---|---|
author | Vidhya, Nirmal Karthikeyan, Balasubramanian Saravana Velmurugan, Natanasabapathy Abarajithan, Mohan Nithyanandan, Sivasankaran |
author_facet | Vidhya, Nirmal Karthikeyan, Balasubramanian Saravana Velmurugan, Natanasabapathy Abarajithan, Mohan Nithyanandan, Sivasankaran |
author_sort | Vidhya, Nirmal |
collection | PubMed |
description | BACKGROUND: Interaction between local anesthetic solution, lidocaine hydrochloride (with and without adrenaline), and root canal irrigants such as sodium hypochlorite (NaOCl), ethylene diamine tetra-acetic acid (EDTA), and chlorhexidine (CHX) has not been studied earlier. Hence, the purpose of this in vitro study was to evaluate the chemical interaction between 2% lidocaine hydrochloride (with and without adrenaline) and commonly used root canal irrigants, NaOCl, EDTA, and CHX. MATERIALS AND METHODS: Samples were divided into eight experimental groups: Group I-Lidocaine hydrochloride (with adrenaline)/3% NaOCl, Group II-Lidocaine hydrochloride (with adrenaline)/17% EDTA, Group III- Lidocaine hydrochloride (with adrenaline)/2% CHX, Group IV-Lidocaine hydrochloride (without adrenaline)/3% NaOCl, Group V-Lidocaine hydrochloride (without adrenaline)/17% EDTA, Group VI-Lidocaine hydrochloride (without adrenaline)/2% CHX, and two control groups: Group VII-Lidocaine hydrochloride (with adrenaline)/deionized water and Group VIII-Lidocaine hydrochloride (without adrenaline)/deionized water. The respective solutions of various groups were mixed in equal proportions (1 ml each) and observed for precipitate formation. Chemical composition of the formed precipitate was then analysed by nuclear magnetic resonance spectroscopy (NMR) and confirmed with diazotation test. RESULTS: In groups I and IV, a white precipitate was observed in all the samples on mixing the respective solutions, which showed a color change to reddish brown after 15 minutes. This precipitate was then analysed by NMR spectroscopy and was observed to be 2,6-xylidine, a reported toxic compound. The experimental groups II, III, V, and VI and control groups VII and VIII showed no precipitate formation in any of the respective samples, until 2 hours. CONCLUSION: Interaction between lidocaine hydrochloride (with and without adrenaline) and NaOCl showed precipitate formation containing 2,6-xylidine, a toxic compound. |
format | Online Article Text |
id | pubmed-4119375 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-41193752014-08-05 Interaction between lidocaine hydrochloride (with and without adrenaline) and various irrigants: A nuclear magnetic resonance analysis Vidhya, Nirmal Karthikeyan, Balasubramanian Saravana Velmurugan, Natanasabapathy Abarajithan, Mohan Nithyanandan, Sivasankaran Dent Res J (Isfahan) Original Article BACKGROUND: Interaction between local anesthetic solution, lidocaine hydrochloride (with and without adrenaline), and root canal irrigants such as sodium hypochlorite (NaOCl), ethylene diamine tetra-acetic acid (EDTA), and chlorhexidine (CHX) has not been studied earlier. Hence, the purpose of this in vitro study was to evaluate the chemical interaction between 2% lidocaine hydrochloride (with and without adrenaline) and commonly used root canal irrigants, NaOCl, EDTA, and CHX. MATERIALS AND METHODS: Samples were divided into eight experimental groups: Group I-Lidocaine hydrochloride (with adrenaline)/3% NaOCl, Group II-Lidocaine hydrochloride (with adrenaline)/17% EDTA, Group III- Lidocaine hydrochloride (with adrenaline)/2% CHX, Group IV-Lidocaine hydrochloride (without adrenaline)/3% NaOCl, Group V-Lidocaine hydrochloride (without adrenaline)/17% EDTA, Group VI-Lidocaine hydrochloride (without adrenaline)/2% CHX, and two control groups: Group VII-Lidocaine hydrochloride (with adrenaline)/deionized water and Group VIII-Lidocaine hydrochloride (without adrenaline)/deionized water. The respective solutions of various groups were mixed in equal proportions (1 ml each) and observed for precipitate formation. Chemical composition of the formed precipitate was then analysed by nuclear magnetic resonance spectroscopy (NMR) and confirmed with diazotation test. RESULTS: In groups I and IV, a white precipitate was observed in all the samples on mixing the respective solutions, which showed a color change to reddish brown after 15 minutes. This precipitate was then analysed by NMR spectroscopy and was observed to be 2,6-xylidine, a reported toxic compound. The experimental groups II, III, V, and VI and control groups VII and VIII showed no precipitate formation in any of the respective samples, until 2 hours. CONCLUSION: Interaction between lidocaine hydrochloride (with and without adrenaline) and NaOCl showed precipitate formation containing 2,6-xylidine, a toxic compound. Medknow Publications & Media Pvt Ltd 2014 /pmc/articles/PMC4119375/ /pubmed/25097652 Text en Copyright: © Dental Research Journal http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Vidhya, Nirmal Karthikeyan, Balasubramanian Saravana Velmurugan, Natanasabapathy Abarajithan, Mohan Nithyanandan, Sivasankaran Interaction between lidocaine hydrochloride (with and without adrenaline) and various irrigants: A nuclear magnetic resonance analysis |
title | Interaction between lidocaine hydrochloride (with and without adrenaline) and various irrigants: A nuclear magnetic resonance analysis |
title_full | Interaction between lidocaine hydrochloride (with and without adrenaline) and various irrigants: A nuclear magnetic resonance analysis |
title_fullStr | Interaction between lidocaine hydrochloride (with and without adrenaline) and various irrigants: A nuclear magnetic resonance analysis |
title_full_unstemmed | Interaction between lidocaine hydrochloride (with and without adrenaline) and various irrigants: A nuclear magnetic resonance analysis |
title_short | Interaction between lidocaine hydrochloride (with and without adrenaline) and various irrigants: A nuclear magnetic resonance analysis |
title_sort | interaction between lidocaine hydrochloride (with and without adrenaline) and various irrigants: a nuclear magnetic resonance analysis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119375/ https://www.ncbi.nlm.nih.gov/pubmed/25097652 |
work_keys_str_mv | AT vidhyanirmal interactionbetweenlidocainehydrochloridewithandwithoutadrenalineandvariousirrigantsanuclearmagneticresonanceanalysis AT karthikeyanbalasubramaniansaravana interactionbetweenlidocainehydrochloridewithandwithoutadrenalineandvariousirrigantsanuclearmagneticresonanceanalysis AT velmurugannatanasabapathy interactionbetweenlidocainehydrochloridewithandwithoutadrenalineandvariousirrigantsanuclearmagneticresonanceanalysis AT abarajithanmohan interactionbetweenlidocainehydrochloridewithandwithoutadrenalineandvariousirrigantsanuclearmagneticresonanceanalysis AT nithyanandansivasankaran interactionbetweenlidocainehydrochloridewithandwithoutadrenalineandvariousirrigantsanuclearmagneticresonanceanalysis |