Cargando…
MS Amanda, a Universal Identification Algorithm Optimized for High Accuracy Tandem Mass Spectra
[Image: see text] Today’s highly accurate spectra provided by modern tandem mass spectrometers offer considerable advantages for the analysis of proteomic samples of increased complexity. Among other factors, the quantity of reliably identified peptides is considerably influenced by the peptide iden...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119474/ https://www.ncbi.nlm.nih.gov/pubmed/24909410 http://dx.doi.org/10.1021/pr500202e |
_version_ | 1782328975758983168 |
---|---|
author | Dorfer, Viktoria Pichler, Peter Stranzl, Thomas Stadlmann, Johannes Taus, Thomas Winkler, Stephan Mechtler, Karl |
author_facet | Dorfer, Viktoria Pichler, Peter Stranzl, Thomas Stadlmann, Johannes Taus, Thomas Winkler, Stephan Mechtler, Karl |
author_sort | Dorfer, Viktoria |
collection | PubMed |
description | [Image: see text] Today’s highly accurate spectra provided by modern tandem mass spectrometers offer considerable advantages for the analysis of proteomic samples of increased complexity. Among other factors, the quantity of reliably identified peptides is considerably influenced by the peptide identification algorithm. While most widely used search engines were developed when high-resolution mass spectrometry data were not readily available for fragment ion masses, we have designed a scoring algorithm particularly suitable for high mass accuracy. Our algorithm, MS Amanda, is generally applicable to HCD, ETD, and CID fragmentation type data. The algorithm confidently explains more spectra at the same false discovery rate than Mascot or SEQUEST on examined high mass accuracy data sets, with excellent overlap and identical peptide sequence identification for most spectra also explained by Mascot or SEQUEST. MS Amanda, available at http://ms.imp.ac.at/?goto=msamanda, is provided free of charge both as standalone version for integration into custom workflows and as a plugin for the Proteome Discoverer platform. |
format | Online Article Text |
id | pubmed-4119474 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-41194742014-08-02 MS Amanda, a Universal Identification Algorithm Optimized for High Accuracy Tandem Mass Spectra Dorfer, Viktoria Pichler, Peter Stranzl, Thomas Stadlmann, Johannes Taus, Thomas Winkler, Stephan Mechtler, Karl J Proteome Res [Image: see text] Today’s highly accurate spectra provided by modern tandem mass spectrometers offer considerable advantages for the analysis of proteomic samples of increased complexity. Among other factors, the quantity of reliably identified peptides is considerably influenced by the peptide identification algorithm. While most widely used search engines were developed when high-resolution mass spectrometry data were not readily available for fragment ion masses, we have designed a scoring algorithm particularly suitable for high mass accuracy. Our algorithm, MS Amanda, is generally applicable to HCD, ETD, and CID fragmentation type data. The algorithm confidently explains more spectra at the same false discovery rate than Mascot or SEQUEST on examined high mass accuracy data sets, with excellent overlap and identical peptide sequence identification for most spectra also explained by Mascot or SEQUEST. MS Amanda, available at http://ms.imp.ac.at/?goto=msamanda, is provided free of charge both as standalone version for integration into custom workflows and as a plugin for the Proteome Discoverer platform. American Chemical Society 2014-06-09 2014-08-01 /pmc/articles/PMC4119474/ /pubmed/24909410 http://dx.doi.org/10.1021/pr500202e Text en Copyright © 2014 American Chemical Society Terms of Use CC-BY (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) |
spellingShingle | Dorfer, Viktoria Pichler, Peter Stranzl, Thomas Stadlmann, Johannes Taus, Thomas Winkler, Stephan Mechtler, Karl MS Amanda, a Universal Identification Algorithm Optimized for High Accuracy Tandem Mass Spectra |
title | MS Amanda, a Universal Identification
Algorithm Optimized
for High Accuracy Tandem Mass Spectra |
title_full | MS Amanda, a Universal Identification
Algorithm Optimized
for High Accuracy Tandem Mass Spectra |
title_fullStr | MS Amanda, a Universal Identification
Algorithm Optimized
for High Accuracy Tandem Mass Spectra |
title_full_unstemmed | MS Amanda, a Universal Identification
Algorithm Optimized
for High Accuracy Tandem Mass Spectra |
title_short | MS Amanda, a Universal Identification
Algorithm Optimized
for High Accuracy Tandem Mass Spectra |
title_sort | ms amanda, a universal identification
algorithm optimized
for high accuracy tandem mass spectra |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119474/ https://www.ncbi.nlm.nih.gov/pubmed/24909410 http://dx.doi.org/10.1021/pr500202e |
work_keys_str_mv | AT dorferviktoria msamandaauniversalidentificationalgorithmoptimizedforhighaccuracytandemmassspectra AT pichlerpeter msamandaauniversalidentificationalgorithmoptimizedforhighaccuracytandemmassspectra AT stranzlthomas msamandaauniversalidentificationalgorithmoptimizedforhighaccuracytandemmassspectra AT stadlmannjohannes msamandaauniversalidentificationalgorithmoptimizedforhighaccuracytandemmassspectra AT tausthomas msamandaauniversalidentificationalgorithmoptimizedforhighaccuracytandemmassspectra AT winklerstephan msamandaauniversalidentificationalgorithmoptimizedforhighaccuracytandemmassspectra AT mechtlerkarl msamandaauniversalidentificationalgorithmoptimizedforhighaccuracytandemmassspectra |