Cargando…

Acute and Long-Term Effects of Noise Exposure on the Neuronal Spontaneous Activity in Cochlear Nucleus and Inferior Colliculus Brain Slices

Noise exposure leads to an immediate hearing loss and is followed by a long-lasting permanent threshold shift, accompanied by changes of cellular properties within the central auditory pathway. Electrophysiological recordings have demonstrated an upregulation of spontaneous neuronal activity. It is...

Descripción completa

Detalles Bibliográficos
Autores principales: Gröschel, Moritz, Ryll, Jana, Götze, Romy, Ernst, Arne, Basta, Dietmar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119618/
https://www.ncbi.nlm.nih.gov/pubmed/25110707
http://dx.doi.org/10.1155/2014/909260
Descripción
Sumario:Noise exposure leads to an immediate hearing loss and is followed by a long-lasting permanent threshold shift, accompanied by changes of cellular properties within the central auditory pathway. Electrophysiological recordings have demonstrated an upregulation of spontaneous neuronal activity. It is still discussed if the observed effects are related to changes of peripheral input or evoked within the central auditory system. The present study should describe the intrinsic temporal patterns of single-unit activity upon noise-induced hearing loss of the dorsal and ventral cochlear nucleus (DCN and VCN) and the inferior colliculus (IC) in adult mouse brain slices. Recordings showed a slight, but significant, elevation in spontaneous firing rates in DCN and VCN immediately after noise trauma, whereas no differences were found in IC. One week postexposure, neuronal responses remained unchanged compared to controls. At 14 days after noise trauma, intrinsic long-term hyperactivity in brain slices of the DCN and the IC was detected for the first time. Therefore, increase in spontaneous activity seems to develop within the period of two weeks, but not before day 7. The results give insight into the complex temporal neurophysiological alterations after noise trauma, leading to a better understanding of central mechanisms in noise-induced hearing loss.