Cargando…
Density-Based Penalty Parameter Optimization on C-SVM
The support vector machine (SVM) is one of the most widely used approaches for data classification and regression. SVM achieves the largest distance between the positive and negative support vectors, which neglects the remote instances away from the SVM interface. In order to avoid a position change...
Autores principales: | Liu, Yun, Lian, Jie, Bartolacci, Michael R., Zeng, Qing-An |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119659/ https://www.ncbi.nlm.nih.gov/pubmed/25114978 http://dx.doi.org/10.1155/2014/851814 |
Ejemplares similares
-
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014) -
Smoothing approximation to the lower order exact penalty function for inequality constrained optimization
por: Lian, Shujun, et al.
Publicado: (2018) -
An Inexact Penalty Decomposition Method for Sparse Optimization
por: Dong, Zhengshan, et al.
Publicado: (2021) -
A penalty-based algorithm proposal for engineering optimization problems
por: Oztas, Gulin Zeynep, et al.
Publicado: (2022) -
Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems
por: Cho, Ming-Yuan, et al.
Publicado: (2017)