Cargando…

Riemann Boundary Value Problem for Triharmonic Equation in Higher Space

We mainly deal with the boundary value problem for triharmonic function with value in a universal Clifford algebra: Δ(3)[u](x) = 0, x ∈ R ( n )∖∂Ω, u (+)(x) = u (−)(x)G(x) + g(x), x ∈ ∂Ω, (D ( j ) u)(+)(x) = (D ( j ) u)(−)(x)A ( j ) + f ( j )(x), x ∈ ∂Ω, u(∞) = 0, where (j = 1,…, 5)  ∂Ω is a Lyapuno...

Descripción completa

Detalles Bibliográficos
Autor principal: Gu, Longfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119665/
https://www.ncbi.nlm.nih.gov/pubmed/25114963
http://dx.doi.org/10.1155/2014/415052
_version_ 1782328990878400512
author Gu, Longfei
author_facet Gu, Longfei
author_sort Gu, Longfei
collection PubMed
description We mainly deal with the boundary value problem for triharmonic function with value in a universal Clifford algebra: Δ(3)[u](x) = 0, x ∈ R ( n )∖∂Ω, u (+)(x) = u (−)(x)G(x) + g(x), x ∈ ∂Ω, (D ( j ) u)(+)(x) = (D ( j ) u)(−)(x)A ( j ) + f ( j )(x), x ∈ ∂Ω, u(∞) = 0, where (j = 1,…, 5)  ∂Ω is a Lyapunov surface in R ( n ), D = ∑( k=1) ( n ) e ( k )(∂/∂x ( k )) is the Dirac operator, and u(x) = ∑( A ) e ( A ) u ( A )(x) are unknown functions with values in a universal Clifford algebra Cl(V ( n,n )). Under some hypotheses, it is proved that the boundary value problem has a unique solution.
format Online
Article
Text
id pubmed-4119665
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-41196652014-08-11 Riemann Boundary Value Problem for Triharmonic Equation in Higher Space Gu, Longfei ScientificWorldJournal Research Article We mainly deal with the boundary value problem for triharmonic function with value in a universal Clifford algebra: Δ(3)[u](x) = 0, x ∈ R ( n )∖∂Ω, u (+)(x) = u (−)(x)G(x) + g(x), x ∈ ∂Ω, (D ( j ) u)(+)(x) = (D ( j ) u)(−)(x)A ( j ) + f ( j )(x), x ∈ ∂Ω, u(∞) = 0, where (j = 1,…, 5)  ∂Ω is a Lyapunov surface in R ( n ), D = ∑( k=1) ( n ) e ( k )(∂/∂x ( k )) is the Dirac operator, and u(x) = ∑( A ) e ( A ) u ( A )(x) are unknown functions with values in a universal Clifford algebra Cl(V ( n,n )). Under some hypotheses, it is proved that the boundary value problem has a unique solution. Hindawi Publishing Corporation 2014-07-08 /pmc/articles/PMC4119665/ /pubmed/25114963 http://dx.doi.org/10.1155/2014/415052 Text en Copyright © 2014 Longfei Gu. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Gu, Longfei
Riemann Boundary Value Problem for Triharmonic Equation in Higher Space
title Riemann Boundary Value Problem for Triharmonic Equation in Higher Space
title_full Riemann Boundary Value Problem for Triharmonic Equation in Higher Space
title_fullStr Riemann Boundary Value Problem for Triharmonic Equation in Higher Space
title_full_unstemmed Riemann Boundary Value Problem for Triharmonic Equation in Higher Space
title_short Riemann Boundary Value Problem for Triharmonic Equation in Higher Space
title_sort riemann boundary value problem for triharmonic equation in higher space
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119665/
https://www.ncbi.nlm.nih.gov/pubmed/25114963
http://dx.doi.org/10.1155/2014/415052
work_keys_str_mv AT gulongfei riemannboundaryvalueproblemfortriharmonicequationinhigherspace