Cargando…

The α–β phase transition in volcanic cristobalite

Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al(3+) and Na(+) for Si(4+); si...

Descripción completa

Detalles Bibliográficos
Autores principales: Damby, David E., Llewellin, Edward W., Horwell, Claire J., Williamson, Ben J., Najorka, Jens, Cressey, Gordon, Carpenter, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119948/
https://www.ncbi.nlm.nih.gov/pubmed/25242910
http://dx.doi.org/10.1107/S160057671401070X
Descripción
Sumario:Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al(3+) and Na(+) for Si(4+); similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the α and β forms and the observed transition between them. Here, for the first time, the dynamics and energy changes associated with the α–β phase transition in volcanic cristobalite are investigated using X-ray powder diffraction with simultaneous in situ heating and differential scanning calorimetry. At ambient temperature, volcanic cristobalite exists in the α form and has a larger cell volume than synthetic α-cristobalite; as a result, its diffraction pattern sits between ICDD α- and β-cristobalite library patterns, which could cause ambiguity in phase identification. On heating from ambient temperature, volcanic cristobalite exhibits a lower degree of thermal expansion than synthetic cristobalite, and it also has a lower α–β transition temperature (∼473 K) compared with synthetic cristobalite (upwards of 543 K); these observations are discussed in relation to the presence of Al(3+) and Na(+) defects. The transition shows a stable and reproducible hysteresis loop with α and β phases coexisting through the transition, suggesting that discrete crystals in the sample have different transition temperatures.