Cargando…
Predicting Tooth Surface Loss Using Genetic Algorithms-Optimized Artificial Neural Networks
Our aim was to predict tooth surface loss in individuals without the need to conduct clinical examinations. Artificial neural networks (ANNs) were used to construct a mathematical model. Input data consisted of age, smoker status, type of tooth brush, brushing, and consumption of pickled food, fizzy...
Autores principales: | Al Haidan, Ali, Abu-Hammad, Osama, Dar-Odeh, Najla |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120478/ https://www.ncbi.nlm.nih.gov/pubmed/25114713 http://dx.doi.org/10.1155/2014/106236 |
Ejemplares similares
-
Predicting recurrent aphthous ulceration using genetic algorithms-optimized neural networks
por: Dar-Odeh, Najla S, et al.
Publicado: (2010) -
What factors affect the severity of permanent tooth impaction?
por: Al-Abdallah, Mariam, et al.
Publicado: (2018) -
The changing trends in tobacco smoking for young Arab women; narghile, an old habit with a liberal attitude
por: Dar-Odeh, Najla S, et al.
Publicado: (2011) -
Tobacco cessation support among dentists: A cross-sectional survey in Saudi Arabia and Kuwait
por: Alajmi, Basais, et al.
Publicado: (2017) -
Analysis of clinical records of dental patients attending Jordan University Hospital: Documentation of drug prescriptions and local anesthetic injections
por: Dar-Odeh, Najla, et al.
Publicado: (2008)