Cargando…
Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition
The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120484/ https://www.ncbi.nlm.nih.gov/pubmed/25114676 http://dx.doi.org/10.1155/2014/380585 |
_version_ | 1782329098229514240 |
---|---|
author | Islam, Md. Rabiul |
author_facet | Islam, Md. Rabiul |
author_sort | Islam, Md. Rabiul |
collection | PubMed |
description | The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal system, left-right iris feature fusion based multimodal system, and left-right iris likelihood ratio score fusion based multimodal system, is combined using voting method to achieve the final recognition result. CASIA-IrisV4 database has been used to measure the performance of the proposed system with various dimensions. Experimental results show the versatility of the proposed system of four different classifiers with various dimensions. Finally, recognition accuracy of the proposed system has been compared with existing N hamming distance score fusion approach proposed by Ma et al., log-likelihood ratio score fusion approach proposed by Schmid et al., and single level feature fusion approach proposed by Hollingsworth et al. |
format | Online Article Text |
id | pubmed-4120484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-41204842014-08-11 Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition Islam, Md. Rabiul Comput Intell Neurosci Research Article The aim of this work is to propose a new feature and score fusion based iris recognition approach where voting method on Multiple Classifier Selection technique has been applied. Four Discrete Hidden Markov Model classifiers output, that is, left iris based unimodal system, right iris based unimodal system, left-right iris feature fusion based multimodal system, and left-right iris likelihood ratio score fusion based multimodal system, is combined using voting method to achieve the final recognition result. CASIA-IrisV4 database has been used to measure the performance of the proposed system with various dimensions. Experimental results show the versatility of the proposed system of four different classifiers with various dimensions. Finally, recognition accuracy of the proposed system has been compared with existing N hamming distance score fusion approach proposed by Ma et al., log-likelihood ratio score fusion approach proposed by Schmid et al., and single level feature fusion approach proposed by Hollingsworth et al. Hindawi Publishing Corporation 2014 2014-07-10 /pmc/articles/PMC4120484/ /pubmed/25114676 http://dx.doi.org/10.1155/2014/380585 Text en Copyright © 2014 Md. Rabiul Islam. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Islam, Md. Rabiul Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition |
title | Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition |
title_full | Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition |
title_fullStr | Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition |
title_full_unstemmed | Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition |
title_short | Feature and Score Fusion Based Multiple Classifier Selection for Iris Recognition |
title_sort | feature and score fusion based multiple classifier selection for iris recognition |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120484/ https://www.ncbi.nlm.nih.gov/pubmed/25114676 http://dx.doi.org/10.1155/2014/380585 |
work_keys_str_mv | AT islammdrabiul featureandscorefusionbasedmultipleclassifierselectionforirisrecognition |