Cargando…
In silico analysis of protein Lys-N(𝜀)-acetylation in plants
Among post-translational modifications, there are some conceptual similarities between Lys-N(𝜀)-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120686/ https://www.ncbi.nlm.nih.gov/pubmed/25136347 http://dx.doi.org/10.3389/fpls.2014.00381 |
Sumario: | Among post-translational modifications, there are some conceptual similarities between Lys-N(𝜀)-acetylation and Ser/Thr/Tyr O-phosphorylation. Herein we present a bioinformatics-based overview of reversible protein Lys-acetylation, including some comparisons with reversible protein phosphorylation. The study of Lys-acetylation of plant proteins has lagged behind studies of mammalian and microbial cells; 1000s of acetylation sites have been identified in mammalian proteins compared with only hundreds of sites in plant proteins. While most previous emphasis was focused on post-translational modifications of histones, more recent studies have addressed metabolic regulation. Being directly coupled with cellular CoA/acetyl-CoA and NAD/NADH, reversible Lys-N(𝜀)-acetylation has the potential to control, or contribute to control, of primary metabolism, signaling, and growth and development. |
---|