Cargando…
Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements
BACKGROUND: Long interspersed nuclear elements (LINES) are the most common transposable element (TE) in almost all metazoan genomes examined. In most LINE superfamilies there are two open reading frames (ORFs), and both are required for transposition. The ORF2 is well characterized, while the struct...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120745/ https://www.ncbi.nlm.nih.gov/pubmed/25093042 http://dx.doi.org/10.1186/1759-8753-5-19 |
_version_ | 1782329139945013248 |
---|---|
author | Metcalfe, Cushla J Casane, Didier |
author_facet | Metcalfe, Cushla J Casane, Didier |
author_sort | Metcalfe, Cushla J |
collection | PubMed |
description | BACKGROUND: Long interspersed nuclear elements (LINES) are the most common transposable element (TE) in almost all metazoan genomes examined. In most LINE superfamilies there are two open reading frames (ORFs), and both are required for transposition. The ORF2 is well characterized, while the structure and function of the ORF1 is less well understood. ORF1s have been classified into five types based on structural organization and the domains identified. Here we perform a large scale analysis of ORF1 domains of 448 elements from the Jockey superfamily using multiple alignments and Hidden Markov Model (HMM)-HMM comparisons. RESULTS: Three major lineages, Chicken repeat 1 (CR1), LINE2 (L2) and Jockey, were identified. All Jockey lineage elements have the same type of ORF1. In contrast, in the L2 and CR1 lineage elements, all five ORF1 types are found, with no one type of ORF1 predominating. A plant homeodomain (PHD) is much more prevalent than previously suspected. ORF1 type variations involving the PHD domain were found in many subgroups of the L2 and CR1 lineages. A Jockey lineage-like ORF1 with a PHD domain was found in both lineages. A phylogenetic analysis of this ORF1 suggests that it has been horizontally transferred. Likewise, an esterase containing ORF1 type was only found in two exclusively vertebrate L2 and CR1 groups, indicating that it may have been acquired in a vertebrate common ancestor and then transferred between the lineages. CONCLUSIONS: The ORF1 of the CR1 and L2 lineages is very structurally diverse. The presence of a PHD domain in many ORF1s of the L2 and CR1 lineages is suggestive of domain shuffling. There is also evidence of possible horizontal transfer of entire ORF1s between lineages. In conclusion, while the structure of the ORF2 appears to be highly constrained and its evolution tree-like, the structure of the ORF1 within the CR1 and L2 lineages is much more variable and its evolution reticulate. |
format | Online Article Text |
id | pubmed-4120745 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-41207452014-08-05 Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements Metcalfe, Cushla J Casane, Didier Mob DNA Research BACKGROUND: Long interspersed nuclear elements (LINES) are the most common transposable element (TE) in almost all metazoan genomes examined. In most LINE superfamilies there are two open reading frames (ORFs), and both are required for transposition. The ORF2 is well characterized, while the structure and function of the ORF1 is less well understood. ORF1s have been classified into five types based on structural organization and the domains identified. Here we perform a large scale analysis of ORF1 domains of 448 elements from the Jockey superfamily using multiple alignments and Hidden Markov Model (HMM)-HMM comparisons. RESULTS: Three major lineages, Chicken repeat 1 (CR1), LINE2 (L2) and Jockey, were identified. All Jockey lineage elements have the same type of ORF1. In contrast, in the L2 and CR1 lineage elements, all five ORF1 types are found, with no one type of ORF1 predominating. A plant homeodomain (PHD) is much more prevalent than previously suspected. ORF1 type variations involving the PHD domain were found in many subgroups of the L2 and CR1 lineages. A Jockey lineage-like ORF1 with a PHD domain was found in both lineages. A phylogenetic analysis of this ORF1 suggests that it has been horizontally transferred. Likewise, an esterase containing ORF1 type was only found in two exclusively vertebrate L2 and CR1 groups, indicating that it may have been acquired in a vertebrate common ancestor and then transferred between the lineages. CONCLUSIONS: The ORF1 of the CR1 and L2 lineages is very structurally diverse. The presence of a PHD domain in many ORF1s of the L2 and CR1 lineages is suggestive of domain shuffling. There is also evidence of possible horizontal transfer of entire ORF1s between lineages. In conclusion, while the structure of the ORF2 appears to be highly constrained and its evolution tree-like, the structure of the ORF1 within the CR1 and L2 lineages is much more variable and its evolution reticulate. BioMed Central 2014-07-01 /pmc/articles/PMC4120745/ /pubmed/25093042 http://dx.doi.org/10.1186/1759-8753-5-19 Text en Copyright © 2014 Metcalfe and Casane; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Metcalfe, Cushla J Casane, Didier Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements |
title | Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements |
title_full | Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements |
title_fullStr | Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements |
title_full_unstemmed | Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements |
title_short | Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements |
title_sort | modular organization and reticulate evolution of the orf1 of jockey superfamily transposable elements |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120745/ https://www.ncbi.nlm.nih.gov/pubmed/25093042 http://dx.doi.org/10.1186/1759-8753-5-19 |
work_keys_str_mv | AT metcalfecushlaj modularorganizationandreticulateevolutionoftheorf1ofjockeysuperfamilytransposableelements AT casanedidier modularorganizationandreticulateevolutionoftheorf1ofjockeysuperfamilytransposableelements |