Cargando…
Efficient gradient computation for dynamical models
Data assimilation is a fundamental issue that arises across many scales in neuroscience — ranging from the study of single neurons using single electrode recordings to the interaction of thousands of neurons using fMRI. Data assimilation involves inverting a generative model that can not only explai...
Autores principales: | Sengupta, B., Friston, K.J., Penny, W.D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120812/ https://www.ncbi.nlm.nih.gov/pubmed/24769182 http://dx.doi.org/10.1016/j.neuroimage.2014.04.040 |
Ejemplares similares
-
Gradient-free MCMC methods for dynamic causal modelling
por: Sengupta, Biswa, et al.
Publicado: (2015) -
Gradient-based MCMC samplers for dynamic causal modelling
por: Sengupta, Biswa, et al.
Publicado: (2016) -
Comparing Dynamic Causal Models using AIC, BIC and Free Energy
por: Penny, W.D.
Publicado: (2012) -
Diffusion-based spatial priors for functional magnetic resonance images
por: Harrison, L.M., et al.
Publicado: (2008) -
Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating
por: Cooray, Gerald K., et al.
Publicado: (2016)