Cargando…
Stochastic Optimized Relevance Feedback Particle Swarm Optimization for Content Based Image Retrieval
One of the major challenges for the CBIR is to bridge the gap between low level features and high level semantics according to the need of the user. To overcome this gap, relevance feedback (RF) coupled with support vector machine (SVM) has been applied successfully. However, when the feedback sampl...
Autores principales: | Imran, Muhammad, Hashim, Rathiah, Noor Elaiza, Abd Khalid, Irtaza, Aun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121098/ https://www.ncbi.nlm.nih.gov/pubmed/25121136 http://dx.doi.org/10.1155/2014/752090 |
Ejemplares similares
-
Optimal power flow using hybrid firefly and particle swarm optimization algorithm
por: Khan, Abdullah, et al.
Publicado: (2020) -
Resolution of the Stochastic Strategy Spatial Prisoner's Dilemma by Means of Particle Swarm Optimization
por: Zhang, Jianlei, et al.
Publicado: (2011) -
Content-Based Image Retrieval Using Colour, Gray, Advanced Texture, Shape Features, and Random Forest Classifier with Optimized Particle Swarm Optimization
por: Subramanian, Manoharan, et al.
Publicado: (2022) -
Particle swarm optimization (PSO)
por: Walker, Brian
Publicado: (2017) -
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization
por: Sun, Tao, et al.
Publicado: (2017)