Cargando…
Efficient and Scalable Graph Similarity Joins in MapReduce
Along with the emergence of massive graph-modeled data, it is of great importance to investigate graph similarity joins due to their wide applications for multiple purposes, including data cleaning, and near duplicate detection. This paper considers graph similarity joins with edit distance constrai...
Autores principales: | Chen, Yifan, Zhao, Xiang, Xiao, Chuan, Zhang, Weiming, Tang, Jiuyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121100/ https://www.ncbi.nlm.nih.gov/pubmed/25121135 http://dx.doi.org/10.1155/2014/749028 |
Ejemplares similares
-
Halvade: scalable sequence analysis with MapReduce
por: Decap, Dries, et al.
Publicado: (2015) -
MapReduce Based Personalized Locality Sensitive Hashing for Similarity Joins on Large Scale Data
por: Wang, Jingjing, et al.
Publicado: (2015) -
Graph partitioning MapReduce-based algorithms for counting triangles in large-scale graphs
por: Sharafeldeen, Ahmed, et al.
Publicado: (2023) -
A scalable neuroinformatics data flow for electrophysiological signals using MapReduce
por: Jayapandian, Catherine, et al.
Publicado: (2015) -
Programming MapReduce with Scalding
por: Chalkiopoulos, Antonios
Publicado: (2014)