Cargando…
Chondroitin Sulfate-E Is a Negative Regulator of a Pro-Tumorigenic Wnt/Beta-Catenin-Collagen 1 Axis in Breast Cancer Cells
Expression of the glycosaminoglycan chondroitin sulfate-E (CS-E) is misregulated in many human cancers, including breast cancer. Cell-surface associated CS-E has been shown to have pro-tumorigenic functions, and pharmacological treatment with exogenous CS-E has been proposed to interfere with tumor...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121171/ https://www.ncbi.nlm.nih.gov/pubmed/25090092 http://dx.doi.org/10.1371/journal.pone.0103966 |
_version_ | 1782329184370032640 |
---|---|
author | Willis, Catherine M. Klüppel, Michael |
author_facet | Willis, Catherine M. Klüppel, Michael |
author_sort | Willis, Catherine M. |
collection | PubMed |
description | Expression of the glycosaminoglycan chondroitin sulfate-E (CS-E) is misregulated in many human cancers, including breast cancer. Cell-surface associated CS-E has been shown to have pro-tumorigenic functions, and pharmacological treatment with exogenous CS-E has been proposed to interfere with tumor progression mediated by endogenous CS-E. However, the effects of exogenous CS-E on breast cancer cell behavior, and the molecular mechanisms deployed by CS-E are not well understood. We show here that treatment with CS-E, but not other chondroitin forms, could interfere with the invasive protrusion formation and migration of breast cancer cells in three-dimensional organotypic cultures. Microarray analysis identified transcriptional programs controlled by CS-E in these cells. Importantly, negative regulation of the pro-metastatic extracellular matrix gene Col1a1 was required for the anti-migratory effects of exogenous CS-E. Knock-down of Col1a1 gene expression mimics the effects of CS-E treatment, while exposing cells to a preformed collagen I matrix interfered with the anti-migratory effects of CS-E. In addition, CS-E specifically interfered with Wnt/beta-catenin signaling, a known pro-tumorigenic pathway. Lastly, we demonstrate that Col1a1 is a positively regulated target gene of the Wnt/beta-catenin pathway in breast cancer cells. Together, our data identify treatment with exogenous CS-E as negative regulatory mechanism of breast cancer cell motility through interference with a pro-tumorigenic Wnt/beta-catenin - Collagen I axis. |
format | Online Article Text |
id | pubmed-4121171 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41211712014-08-05 Chondroitin Sulfate-E Is a Negative Regulator of a Pro-Tumorigenic Wnt/Beta-Catenin-Collagen 1 Axis in Breast Cancer Cells Willis, Catherine M. Klüppel, Michael PLoS One Research Article Expression of the glycosaminoglycan chondroitin sulfate-E (CS-E) is misregulated in many human cancers, including breast cancer. Cell-surface associated CS-E has been shown to have pro-tumorigenic functions, and pharmacological treatment with exogenous CS-E has been proposed to interfere with tumor progression mediated by endogenous CS-E. However, the effects of exogenous CS-E on breast cancer cell behavior, and the molecular mechanisms deployed by CS-E are not well understood. We show here that treatment with CS-E, but not other chondroitin forms, could interfere with the invasive protrusion formation and migration of breast cancer cells in three-dimensional organotypic cultures. Microarray analysis identified transcriptional programs controlled by CS-E in these cells. Importantly, negative regulation of the pro-metastatic extracellular matrix gene Col1a1 was required for the anti-migratory effects of exogenous CS-E. Knock-down of Col1a1 gene expression mimics the effects of CS-E treatment, while exposing cells to a preformed collagen I matrix interfered with the anti-migratory effects of CS-E. In addition, CS-E specifically interfered with Wnt/beta-catenin signaling, a known pro-tumorigenic pathway. Lastly, we demonstrate that Col1a1 is a positively regulated target gene of the Wnt/beta-catenin pathway in breast cancer cells. Together, our data identify treatment with exogenous CS-E as negative regulatory mechanism of breast cancer cell motility through interference with a pro-tumorigenic Wnt/beta-catenin - Collagen I axis. Public Library of Science 2014-08-04 /pmc/articles/PMC4121171/ /pubmed/25090092 http://dx.doi.org/10.1371/journal.pone.0103966 Text en © 2014 Willis, Klüppel http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Willis, Catherine M. Klüppel, Michael Chondroitin Sulfate-E Is a Negative Regulator of a Pro-Tumorigenic Wnt/Beta-Catenin-Collagen 1 Axis in Breast Cancer Cells |
title | Chondroitin Sulfate-E Is a Negative Regulator of a Pro-Tumorigenic Wnt/Beta-Catenin-Collagen 1 Axis in Breast Cancer Cells |
title_full | Chondroitin Sulfate-E Is a Negative Regulator of a Pro-Tumorigenic Wnt/Beta-Catenin-Collagen 1 Axis in Breast Cancer Cells |
title_fullStr | Chondroitin Sulfate-E Is a Negative Regulator of a Pro-Tumorigenic Wnt/Beta-Catenin-Collagen 1 Axis in Breast Cancer Cells |
title_full_unstemmed | Chondroitin Sulfate-E Is a Negative Regulator of a Pro-Tumorigenic Wnt/Beta-Catenin-Collagen 1 Axis in Breast Cancer Cells |
title_short | Chondroitin Sulfate-E Is a Negative Regulator of a Pro-Tumorigenic Wnt/Beta-Catenin-Collagen 1 Axis in Breast Cancer Cells |
title_sort | chondroitin sulfate-e is a negative regulator of a pro-tumorigenic wnt/beta-catenin-collagen 1 axis in breast cancer cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121171/ https://www.ncbi.nlm.nih.gov/pubmed/25090092 http://dx.doi.org/10.1371/journal.pone.0103966 |
work_keys_str_mv | AT williscatherinem chondroitinsulfateeisanegativeregulatorofaprotumorigenicwntbetacatenincollagen1axisinbreastcancercells AT kluppelmichael chondroitinsulfateeisanegativeregulatorofaprotumorigenicwntbetacatenincollagen1axisinbreastcancercells |