Cargando…

Involvement of the ERK pathway in the protective effects of glycyrrhizic acid against the MPP(+)-induced apoptosis of dopaminergic neuronal cells

Glycyrrhizic acid (GA), a major compound separated from Radix Glycyrrhizae, has been shwon to exert various biochemical effects, including neuroprotective effects. In the present study, we investigated the protective effects of GA against 1-methyl-4-phenylpyridinium (MPP(+))-induced damage to differ...

Descripción completa

Detalles Bibliográficos
Autores principales: TENG, LESHENG, KOU, CHUNJIA, LU, CHENGYU, XU, JIAMING, XIE, JING, LU, JIAHUI, LIU, YAN, WANG, ZHENZUO, WANG, DI
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121344/
https://www.ncbi.nlm.nih.gov/pubmed/24993693
http://dx.doi.org/10.3892/ijmm.2014.1830
Descripción
Sumario:Glycyrrhizic acid (GA), a major compound separated from Radix Glycyrrhizae, has been shwon to exert various biochemical effects, including neuroprotective effects. In the present study, we investigated the protective effects of GA against 1-methyl-4-phenylpyridinium (MPP(+))-induced damage to differentiated PC12 (DPC12) cells. Compared with the MPP(+)-treated cells, GA markedly improved cell viability, restored mitochondrial dysfunction, suppressed the overexpression of cleaved poly(ADP-ribose) polymerase (PARP), and suppressed the overproduction of lactate dehydrogenase (LDH) and intracellular Ca(2+) overload. The protective effects of GA on cell survival were further confirmed in primary cortical neurons. GA markedly increased the expression of phosphorylated extracellular signal-regulated kinase (p-ERK), as well as its migration from the cytoplasm to nucleus. PD98059, an inhibitor of ERK, blocked GA-enhanced ERK activation and reduced cell viability. However, pre-treatment with GA had no effects on the expression of phosphorylated AKT (p-AKT) and total AKT (t-AKT). These results indicate that the GA-mediated neuroprotective effects are associated with its modulation of multiple anti-apoptotic and pro-apoptotic factors, particularly the ERK signaling pathway. This study provides evidence supporting the use of GA as a potential therapeutic agent for the treatment of neurodegenerative diseases and neuronal injury.