Cargando…

Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes

BACKGROUND: Spinal root avulsion induces multiple pathophysiological events consisting of altered levels of specific genes and proteins related to inflammation, apoptosis, and oxidative stress, which collectively result in the death of the affected motoneurons. Recent studies have demonstrated that...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Ying, Ling, Ze-Min, Fu, Rao, Li, Ying-Qin, Cheng, Xiao, Song, Fa-Huan, Luo, Hao-Xuan, Zhou, Li-Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121484/
https://www.ncbi.nlm.nih.gov/pubmed/25055855
http://dx.doi.org/10.1186/1471-2202-15-92
_version_ 1782329235664273408
author Tang, Ying
Ling, Ze-Min
Fu, Rao
Li, Ying-Qin
Cheng, Xiao
Song, Fa-Huan
Luo, Hao-Xuan
Zhou, Li-Hua
author_facet Tang, Ying
Ling, Ze-Min
Fu, Rao
Li, Ying-Qin
Cheng, Xiao
Song, Fa-Huan
Luo, Hao-Xuan
Zhou, Li-Hua
author_sort Tang, Ying
collection PubMed
description BACKGROUND: Spinal root avulsion induces multiple pathophysiological events consisting of altered levels of specific genes and proteins related to inflammation, apoptosis, and oxidative stress, which collectively result in the death of the affected motoneurons. Recent studies have demonstrated that the gene changes involved in spinal cord injury can be regulated by microRNAs, which are a class of short non-coding RNA molecules that repress target mRNAs post-transcriptionally. With consideration for the time course of the avulsion-induced gene expression patterns within dying motoneurons, we employed microarray analysis to determine whether and how microRNAs are involved in the changes of gene expression induced by pathophysiological events in spinal cord motoneurons. RESULTS: The expression of a total of 3,361 miRNAs in the spinal cord of adult rats was identified. Unilateral root-avulsion resulted in significant alterations in miRNA expression. In the ipsilateral half compared to the contralateral half of the spinal cord, on the 3rd day after the injury, 55 miRNAs were upregulated, and 24 were downregulated, and on the 14th day after the injury, 36 miRNAs were upregulated, and 23 were downregulated. The upregulation of miR-146b-5p and miR-31a-3p and the downregulation of miR-324-3p and miR-484 were observed. Eleven of the miRNAs, including miR-21-5p, demonstrated a sustained increase; however, only miR-466c-3p presented a sustained decrease 3 and 14 days after the injury. More interestingly, 4 of the miRNAs, including miR-18a, were upregulated on the 3rd day but were downregulated on the 14th day after injury. Some of these miRNAs target inflammatory-response genes in the early stage of injury, and others target neurotransmitter transport genes in the intermediate stages of injury. The altered miRNA expression pattern suggests that the MAPK and calcium signaling pathways are consistently involved in the injury response. CONCLUSIONS: This analysis may facilitate the understanding of the time-specific altered expression of a large set of microRNAs in the spinal cord after brachial root avulsion. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2202-15-92) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4121484
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-41214842014-08-06 Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes Tang, Ying Ling, Ze-Min Fu, Rao Li, Ying-Qin Cheng, Xiao Song, Fa-Huan Luo, Hao-Xuan Zhou, Li-Hua BMC Neurosci Research Article BACKGROUND: Spinal root avulsion induces multiple pathophysiological events consisting of altered levels of specific genes and proteins related to inflammation, apoptosis, and oxidative stress, which collectively result in the death of the affected motoneurons. Recent studies have demonstrated that the gene changes involved in spinal cord injury can be regulated by microRNAs, which are a class of short non-coding RNA molecules that repress target mRNAs post-transcriptionally. With consideration for the time course of the avulsion-induced gene expression patterns within dying motoneurons, we employed microarray analysis to determine whether and how microRNAs are involved in the changes of gene expression induced by pathophysiological events in spinal cord motoneurons. RESULTS: The expression of a total of 3,361 miRNAs in the spinal cord of adult rats was identified. Unilateral root-avulsion resulted in significant alterations in miRNA expression. In the ipsilateral half compared to the contralateral half of the spinal cord, on the 3rd day after the injury, 55 miRNAs were upregulated, and 24 were downregulated, and on the 14th day after the injury, 36 miRNAs were upregulated, and 23 were downregulated. The upregulation of miR-146b-5p and miR-31a-3p and the downregulation of miR-324-3p and miR-484 were observed. Eleven of the miRNAs, including miR-21-5p, demonstrated a sustained increase; however, only miR-466c-3p presented a sustained decrease 3 and 14 days after the injury. More interestingly, 4 of the miRNAs, including miR-18a, were upregulated on the 3rd day but were downregulated on the 14th day after injury. Some of these miRNAs target inflammatory-response genes in the early stage of injury, and others target neurotransmitter transport genes in the intermediate stages of injury. The altered miRNA expression pattern suggests that the MAPK and calcium signaling pathways are consistently involved in the injury response. CONCLUSIONS: This analysis may facilitate the understanding of the time-specific altered expression of a large set of microRNAs in the spinal cord after brachial root avulsion. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2202-15-92) contains supplementary material, which is available to authorized users. BioMed Central 2014-07-24 /pmc/articles/PMC4121484/ /pubmed/25055855 http://dx.doi.org/10.1186/1471-2202-15-92 Text en © Tang et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Tang, Ying
Ling, Ze-Min
Fu, Rao
Li, Ying-Qin
Cheng, Xiao
Song, Fa-Huan
Luo, Hao-Xuan
Zhou, Li-Hua
Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes
title Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes
title_full Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes
title_fullStr Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes
title_full_unstemmed Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes
title_short Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes
title_sort time-specific microrna changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121484/
https://www.ncbi.nlm.nih.gov/pubmed/25055855
http://dx.doi.org/10.1186/1471-2202-15-92
work_keys_str_mv AT tangying timespecificmicrornachangesduringspinalmotoneurondegenerationinadultratsfollowingunilateralbrachialplexusrootavulsionipsilateralvscontralateralchanges
AT lingzemin timespecificmicrornachangesduringspinalmotoneurondegenerationinadultratsfollowingunilateralbrachialplexusrootavulsionipsilateralvscontralateralchanges
AT furao timespecificmicrornachangesduringspinalmotoneurondegenerationinadultratsfollowingunilateralbrachialplexusrootavulsionipsilateralvscontralateralchanges
AT liyingqin timespecificmicrornachangesduringspinalmotoneurondegenerationinadultratsfollowingunilateralbrachialplexusrootavulsionipsilateralvscontralateralchanges
AT chengxiao timespecificmicrornachangesduringspinalmotoneurondegenerationinadultratsfollowingunilateralbrachialplexusrootavulsionipsilateralvscontralateralchanges
AT songfahuan timespecificmicrornachangesduringspinalmotoneurondegenerationinadultratsfollowingunilateralbrachialplexusrootavulsionipsilateralvscontralateralchanges
AT luohaoxuan timespecificmicrornachangesduringspinalmotoneurondegenerationinadultratsfollowingunilateralbrachialplexusrootavulsionipsilateralvscontralateralchanges
AT zhoulihua timespecificmicrornachangesduringspinalmotoneurondegenerationinadultratsfollowingunilateralbrachialplexusrootavulsionipsilateralvscontralateralchanges