Cargando…

Paxillin inhibits HDAC6 to regulate microtubule acetylation, Golgi structure, and polarized migration

Polarized cell migration is essential for normal organism development and is also a critical component of cancer cell invasion and disease progression. Directional cell motility requires the coordination of dynamic cell–extracellular matrix interactions as well as repositioning of the Golgi apparatu...

Descripción completa

Detalles Bibliográficos
Autores principales: Deakin, Nicholas O., Turner, Christopher E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121979/
https://www.ncbi.nlm.nih.gov/pubmed/25070956
http://dx.doi.org/10.1083/jcb.201403039
Descripción
Sumario:Polarized cell migration is essential for normal organism development and is also a critical component of cancer cell invasion and disease progression. Directional cell motility requires the coordination of dynamic cell–extracellular matrix interactions as well as repositioning of the Golgi apparatus, both of which can be controlled by the microtubule (MT) cytoskeleton. In this paper, we have identified a new and conserved role for the focal adhesion scaffold protein paxillin in regulating the posttranslational modification of the MT cytoskeleton through an inhibitory interaction with the α-tubulin deacetylase HDAC6. We also determined that through HDAC6-dependent regulation of the MT cytoskeleton, paxillin regulates both Golgi organelle integrity and polarized cell invasion and migration in both three-dimensional and two-dimensional matrix microenvironments. Importantly, these data reveal a fundamental role for paxillin in coordinating MT acetylation-dependent cell polarization and migration in both normal and transformed cells.