Cargando…
Protein Binding Site Prediction by Combining Hidden Markov Support Vector Machine and Profile-Based Propensities
Identification of protein binding sites is critical for studying the function of the proteins. In this paper, we proposed a method for protein binding site prediction, which combined the order profile propensities and hidden Markov support vector machine (HM-SVM). This method employed the sequential...
Autores principales: | Liu, Bin, Liu, Bingquan, Liu, Fule, Wang, Xiaolong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122092/ https://www.ncbi.nlm.nih.gov/pubmed/25133234 http://dx.doi.org/10.1155/2014/464093 |
Ejemplares similares
-
Prediction of protein binding sites in protein structures using hidden Markov support vector machine
por: Liu, Bin, et al.
Publicado: (2009) -
Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation
por: Xu, Ruifeng, et al.
Publicado: (2015) -
Accurate Identification of Antioxidant Proteins Based on a Combination of Machine Learning Techniques and Hidden Markov Model Profiles
por: Shen, Zhehan, et al.
Publicado: (2021) -
Binding site discovery from nucleic acid sequences by discriminative learning of hidden Markov models
por: Maaskola, Jonas, et al.
Publicado: (2014) -
GRIFFIN: a system for predicting GPCR–G-protein coupling selectivity using a support vector machine and a hidden Markov model
por: Yabuki, Yukimitsu, et al.
Publicado: (2005)