Cargando…
An Analysis Dictionary Learning Algorithm under a Noisy Data Model with Orthogonality Constraint
Two common problems are often encountered in analysis dictionary learning (ADL) algorithms. The first one is that the original clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisy measurements. This, however, renders a computationally slo...
Autores principales: | Zhang, Ye, Yu, Tenglong, Wang, Wenwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122105/ https://www.ncbi.nlm.nih.gov/pubmed/25126605 http://dx.doi.org/10.1155/2014/852978 |
Ejemplares similares
-
Dictionary Learning Phase Retrieval from Noisy Diffraction Patterns
por: Krishnan, Joshin P., et al.
Publicado: (2018) -
Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation
por: Grossi, Giuliano, et al.
Publicado: (2017) -
Dictionary learning based noisy image super-resolution via distance penalty weight model
por: Han, Yulan, et al.
Publicado: (2017) -
Improved Coarray Interpolation Algorithms with Additional Orthogonal Constraint for Cyclostationary Signals
por: Song, Jinyang, et al.
Publicado: (2018) -
Overlapping community finding with noisy pairwise constraints
por: Alghamdi, Elham, et al.
Publicado: (2020)