Cargando…
In-Silico Prediction of Key Metabolic Differences between Two Non-Small Cell Lung Cancer Subtypes
Metabolism expresses the phenotype of living cells and understanding it is crucial for different applications in biotechnology and health. With the increasing availability of metabolomic, proteomic and, to a larger extent, transcriptomic data, the elucidation of specific metabolic properties in diff...
Autores principales: | Rezola, Alberto, Pey, Jon, Rubio, Ángel, Planes, Francisco J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122379/ https://www.ncbi.nlm.nih.gov/pubmed/25093336 http://dx.doi.org/10.1371/journal.pone.0103998 |
Ejemplares similares
-
Assessment of FBA Based Gene Essentiality Analysis in Cancer with a Fast Context-Specific Network Reconstruction Method
por: Tobalina, Luis, et al.
Publicado: (2016) -
Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways
por: Pey, Jon, et al.
Publicado: (2013) -
A network-based approach for predicting key enzymes explaining metabolite abundance alterations in a disease phenotype
por: Pey, Jon, et al.
Publicado: (2013) -
Path finding methods accounting for stoichiometry in metabolic networks
por: Pey, Jon, et al.
Publicado: (2011) -
In-silico gene essentiality analysis of polyamine biosynthesis reveals APRT as a potential target in cancer
por: Pey, Jon, et al.
Publicado: (2017)