Cargando…
Dual N- and C-Terminal Helices Are Required for Endoplasmic Reticulum and Lipid Droplet Association of Alcohol Acetyltransferases in Saccharomyces cerevisiae
In the yeast Saccharomyces cerevisiae two alcohol acetyltransferases (AATases), Atf1 and Atf2, condense short chain alcohols with acetyl-CoA to produce volatile acetate esters. Such esters are, in large part, responsible for the distinctive flavors and aromas of fermented beverages including beer, w...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122449/ https://www.ncbi.nlm.nih.gov/pubmed/25093817 http://dx.doi.org/10.1371/journal.pone.0104141 |
_version_ | 1782329355293163520 |
---|---|
author | Lin, Jyun-Liang Wheeldon, Ian |
author_facet | Lin, Jyun-Liang Wheeldon, Ian |
author_sort | Lin, Jyun-Liang |
collection | PubMed |
description | In the yeast Saccharomyces cerevisiae two alcohol acetyltransferases (AATases), Atf1 and Atf2, condense short chain alcohols with acetyl-CoA to produce volatile acetate esters. Such esters are, in large part, responsible for the distinctive flavors and aromas of fermented beverages including beer, wine, and sake. Atf1 and Atf2 localize to the endoplasmic reticulum (ER) and Atf1 is known to localize to lipid droplets (LDs). The mechanism and function of these localizations are unknown. Here, we investigate potential mechanisms of Atf1 and Atf2 membrane association. Segments of the N- and C-terminal domains of Atf1 (residues 24–41 and 508–525, respectively) are predicted to be amphipathic helices. Truncations of these helices revealed that the terminal domains are essential for ER and LD association. Moreover, mutations of the basic or hydrophobic residues in the N-terminal helix and hydrophobic residues in the C-terminal helix disrupted ER association and subsequent sorting from the ER to LDs. Similar amphipathic helices are found at both ends of Atf2, enabling ER and LD association. As was the case with Atf1, mutations to the N- and C-terminal helices of Atf2 prevented membrane association. Sequence comparison of the AATases from Saccharomyces, non-Saccharomyces yeast (K. lactis and P. anomala) and fruits species (C. melo and S. lycopersicum) showed that only AATases from Saccharomyces evolved terminal amphipathic helices. Heterologous expression of these orthologs in S. cerevisiae revealed that the absence of terminal amphipathic helices eliminates LD association. Combined, the results of this study suggest a common mechanism of membrane association for AATases via dual N- and C-terminal amphipathic helices. |
format | Online Article Text |
id | pubmed-4122449 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41224492014-08-12 Dual N- and C-Terminal Helices Are Required for Endoplasmic Reticulum and Lipid Droplet Association of Alcohol Acetyltransferases in Saccharomyces cerevisiae Lin, Jyun-Liang Wheeldon, Ian PLoS One Research Article In the yeast Saccharomyces cerevisiae two alcohol acetyltransferases (AATases), Atf1 and Atf2, condense short chain alcohols with acetyl-CoA to produce volatile acetate esters. Such esters are, in large part, responsible for the distinctive flavors and aromas of fermented beverages including beer, wine, and sake. Atf1 and Atf2 localize to the endoplasmic reticulum (ER) and Atf1 is known to localize to lipid droplets (LDs). The mechanism and function of these localizations are unknown. Here, we investigate potential mechanisms of Atf1 and Atf2 membrane association. Segments of the N- and C-terminal domains of Atf1 (residues 24–41 and 508–525, respectively) are predicted to be amphipathic helices. Truncations of these helices revealed that the terminal domains are essential for ER and LD association. Moreover, mutations of the basic or hydrophobic residues in the N-terminal helix and hydrophobic residues in the C-terminal helix disrupted ER association and subsequent sorting from the ER to LDs. Similar amphipathic helices are found at both ends of Atf2, enabling ER and LD association. As was the case with Atf1, mutations to the N- and C-terminal helices of Atf2 prevented membrane association. Sequence comparison of the AATases from Saccharomyces, non-Saccharomyces yeast (K. lactis and P. anomala) and fruits species (C. melo and S. lycopersicum) showed that only AATases from Saccharomyces evolved terminal amphipathic helices. Heterologous expression of these orthologs in S. cerevisiae revealed that the absence of terminal amphipathic helices eliminates LD association. Combined, the results of this study suggest a common mechanism of membrane association for AATases via dual N- and C-terminal amphipathic helices. Public Library of Science 2014-08-05 /pmc/articles/PMC4122449/ /pubmed/25093817 http://dx.doi.org/10.1371/journal.pone.0104141 Text en © 2014 Lin, Wheeldon http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lin, Jyun-Liang Wheeldon, Ian Dual N- and C-Terminal Helices Are Required for Endoplasmic Reticulum and Lipid Droplet Association of Alcohol Acetyltransferases in Saccharomyces cerevisiae |
title | Dual N- and C-Terminal Helices Are Required for Endoplasmic Reticulum and Lipid Droplet Association of Alcohol Acetyltransferases in Saccharomyces cerevisiae
|
title_full | Dual N- and C-Terminal Helices Are Required for Endoplasmic Reticulum and Lipid Droplet Association of Alcohol Acetyltransferases in Saccharomyces cerevisiae
|
title_fullStr | Dual N- and C-Terminal Helices Are Required for Endoplasmic Reticulum and Lipid Droplet Association of Alcohol Acetyltransferases in Saccharomyces cerevisiae
|
title_full_unstemmed | Dual N- and C-Terminal Helices Are Required for Endoplasmic Reticulum and Lipid Droplet Association of Alcohol Acetyltransferases in Saccharomyces cerevisiae
|
title_short | Dual N- and C-Terminal Helices Are Required for Endoplasmic Reticulum and Lipid Droplet Association of Alcohol Acetyltransferases in Saccharomyces cerevisiae
|
title_sort | dual n- and c-terminal helices are required for endoplasmic reticulum and lipid droplet association of alcohol acetyltransferases in saccharomyces cerevisiae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122449/ https://www.ncbi.nlm.nih.gov/pubmed/25093817 http://dx.doi.org/10.1371/journal.pone.0104141 |
work_keys_str_mv | AT linjyunliang dualnandcterminalhelicesarerequiredforendoplasmicreticulumandlipiddropletassociationofalcoholacetyltransferasesinsaccharomycescerevisiae AT wheeldonian dualnandcterminalhelicesarerequiredforendoplasmicreticulumandlipiddropletassociationofalcoholacetyltransferasesinsaccharomycescerevisiae |