Cargando…

Transcriptional landscape of repetitive elements in normal and cancer human cells

BACKGROUND: Repetitive elements comprise at least 55% of the human genome with more recent estimates as high as two-thirds. Most of these elements are retrotransposons, DNA sequences that can insert copies of themselves into new genomic locations by a “copy and paste” mechanism. These mobile genetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Criscione, Steven W, Zhang, Yue, Thompson, William, Sedivy, John M, Neretti, Nicola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122776/
https://www.ncbi.nlm.nih.gov/pubmed/25012247
http://dx.doi.org/10.1186/1471-2164-15-583
Descripción
Sumario:BACKGROUND: Repetitive elements comprise at least 55% of the human genome with more recent estimates as high as two-thirds. Most of these elements are retrotransposons, DNA sequences that can insert copies of themselves into new genomic locations by a “copy and paste” mechanism. These mobile genetic elements play important roles in shaping genomes during evolution, and have been implicated in the etiology of many human diseases. Despite their abundance and diversity, few studies investigated the regulation of endogenous retrotransposons at the genome-wide scale, primarily because of the technical difficulties of uniquely mapping high-throughput sequencing reads to repetitive DNA. RESULTS: Here we develop a new computational method called RepEnrich to study genome-wide transcriptional regulation of repetitive elements. We show that many of the Long Terminal Repeat retrotransposons in humans are transcriptionally active in a cell line-specific manner. Cancer cell lines display increased RNA Polymerase II binding to retrotransposons than cell lines derived from normal tissue. Consistent with increased transcriptional activity of retrotransposons in cancer cells we found significantly higher levels of L1 retrotransposon RNA expression in prostate tumors compared to normal-matched controls. CONCLUSIONS: Our results support increased transcription of retrotransposons in transformed cells, which may explain the somatic retrotransposition events recently reported in several types of cancers. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at 10.1186/1471-2164-15-583 and is accessible for authorized users.