Cargando…
Sealing vessels up to 7 mm in diameter solely with ultrasonic technology
INTRODUCTION: Ultrasonic energy is a mainstay in the armamentarium of surgeons, providing multifunctionality, precision, and control when dissecting and sealing vessels up to 5 mm in diameter. Historically, the inability to seal vessels in the 5–7 mm range has been perceived as an inherent limitatio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124047/ https://www.ncbi.nlm.nih.gov/pubmed/25114600 http://dx.doi.org/10.2147/MDER.S66848 |
_version_ | 1782329574328107008 |
---|---|
author | Timm, Richard W Asher, Ryan M Tellio, Karalyn R Welling, Alissa L Clymer, Jeffrey W Amaral, Joseph F |
author_facet | Timm, Richard W Asher, Ryan M Tellio, Karalyn R Welling, Alissa L Clymer, Jeffrey W Amaral, Joseph F |
author_sort | Timm, Richard W |
collection | PubMed |
description | INTRODUCTION: Ultrasonic energy is a mainstay in the armamentarium of surgeons, providing multifunctionality, precision, and control when dissecting and sealing vessels up to 5 mm in diameter. Historically, the inability to seal vessels in the 5–7 mm range has been perceived as an inherent limitation of ultrasonic technology. The purpose of this study was to evaluate sealing of vessels up to 7 mm in diameter with an ultrasonic device that modulates energy delivery during the sealing period. METHODS: In ex vivo benchtop and in vivo acute and survival preclinical models, a new ultrasonic device, Harmonic ACE(®)+7 Shears (Harmonic 7), was compared with advanced bipolar devices in sealing vessels 1–7 mm in diameter with respect of burst pressure, seal reliability, and seal durability. Lateral thermal damage and transection time were also evaluated. RESULTS: Ex vivo tests of Harmonic 7 demonstrated significantly greater median burst pressures than an advanced bipolar device both for vessels <5 mm in diameter (1,078 mmHg and 836 mmHg, respectively, P=0.046) and for those in the range of 5–7 mm (1,419 mmHg and 591 mmHg, P<0.001). In vivo tests in porcine and caprine models demonstrated similar rates of hemostasis between Harmonic 7 and advanced bipolar devices, with high success rates at initial transection and seal durability of 100% after a 30-day survival period. CONCLUSION: Sealing 5–7 mm vessels is not a limitation of the type of energy used but of how energy is delivered to tissue. These studies document the ability of ultrasonic energy alone to reliably seal large vessels 5–7 mm in diameter, with significantly greater burst pressure observed in in vitro studies than those observed with an advanced bipolar technology when energy delivery is modulated during the sealing cycle. Furthermore, the seals created in 5–7 mm vessels are shown to be reliable and durable in in vivo preclinical studies. |
format | Online Article Text |
id | pubmed-4124047 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-41240472014-08-11 Sealing vessels up to 7 mm in diameter solely with ultrasonic technology Timm, Richard W Asher, Ryan M Tellio, Karalyn R Welling, Alissa L Clymer, Jeffrey W Amaral, Joseph F Med Devices (Auckl) Original Research INTRODUCTION: Ultrasonic energy is a mainstay in the armamentarium of surgeons, providing multifunctionality, precision, and control when dissecting and sealing vessels up to 5 mm in diameter. Historically, the inability to seal vessels in the 5–7 mm range has been perceived as an inherent limitation of ultrasonic technology. The purpose of this study was to evaluate sealing of vessels up to 7 mm in diameter with an ultrasonic device that modulates energy delivery during the sealing period. METHODS: In ex vivo benchtop and in vivo acute and survival preclinical models, a new ultrasonic device, Harmonic ACE(®)+7 Shears (Harmonic 7), was compared with advanced bipolar devices in sealing vessels 1–7 mm in diameter with respect of burst pressure, seal reliability, and seal durability. Lateral thermal damage and transection time were also evaluated. RESULTS: Ex vivo tests of Harmonic 7 demonstrated significantly greater median burst pressures than an advanced bipolar device both for vessels <5 mm in diameter (1,078 mmHg and 836 mmHg, respectively, P=0.046) and for those in the range of 5–7 mm (1,419 mmHg and 591 mmHg, P<0.001). In vivo tests in porcine and caprine models demonstrated similar rates of hemostasis between Harmonic 7 and advanced bipolar devices, with high success rates at initial transection and seal durability of 100% after a 30-day survival period. CONCLUSION: Sealing 5–7 mm vessels is not a limitation of the type of energy used but of how energy is delivered to tissue. These studies document the ability of ultrasonic energy alone to reliably seal large vessels 5–7 mm in diameter, with significantly greater burst pressure observed in in vitro studies than those observed with an advanced bipolar technology when energy delivery is modulated during the sealing cycle. Furthermore, the seals created in 5–7 mm vessels are shown to be reliable and durable in in vivo preclinical studies. Dove Medical Press 2014-07-30 /pmc/articles/PMC4124047/ /pubmed/25114600 http://dx.doi.org/10.2147/MDER.S66848 Text en © 2014 Timm et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Timm, Richard W Asher, Ryan M Tellio, Karalyn R Welling, Alissa L Clymer, Jeffrey W Amaral, Joseph F Sealing vessels up to 7 mm in diameter solely with ultrasonic technology |
title | Sealing vessels up to 7 mm in diameter solely with ultrasonic technology |
title_full | Sealing vessels up to 7 mm in diameter solely with ultrasonic technology |
title_fullStr | Sealing vessels up to 7 mm in diameter solely with ultrasonic technology |
title_full_unstemmed | Sealing vessels up to 7 mm in diameter solely with ultrasonic technology |
title_short | Sealing vessels up to 7 mm in diameter solely with ultrasonic technology |
title_sort | sealing vessels up to 7 mm in diameter solely with ultrasonic technology |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124047/ https://www.ncbi.nlm.nih.gov/pubmed/25114600 http://dx.doi.org/10.2147/MDER.S66848 |
work_keys_str_mv | AT timmrichardw sealingvesselsupto7mmindiametersolelywithultrasonictechnology AT asherryanm sealingvesselsupto7mmindiametersolelywithultrasonictechnology AT telliokaralynr sealingvesselsupto7mmindiametersolelywithultrasonictechnology AT wellingalissal sealingvesselsupto7mmindiametersolelywithultrasonictechnology AT clymerjeffreyw sealingvesselsupto7mmindiametersolelywithultrasonictechnology AT amaraljosephf sealingvesselsupto7mmindiametersolelywithultrasonictechnology |