Cargando…
Computational Analysis of the Model Describing HIV Infection of CD4(+)T Cells
An analysis of the model underpinning the description of the spread of HIV infection of CD4(+)T cells is examined in detail in this work. Investigations of the disease free and endemic equilibrium are done using the method of Jacobian matrix. An iteration technique, namely, the homotopy decompositio...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124211/ https://www.ncbi.nlm.nih.gov/pubmed/25136605 http://dx.doi.org/10.1155/2014/618404 |
Sumario: | An analysis of the model underpinning the description of the spread of HIV infection of CD4(+)T cells is examined in detail in this work. Investigations of the disease free and endemic equilibrium are done using the method of Jacobian matrix. An iteration technique, namely, the homotopy decomposition method (HDM), is implemented to give an approximate solution of nonlinear ordinary differential equation systems. The technique is described and illustrated with numerical examples. The approximated solution obtained via HDM is compared with those obtained via other methods to prove the trustworthiness of HDM. Moreover, the lessening and simplicity in calculations furnish HDM with a broader applicability. |
---|