Cargando…

The Pólya-Szegö Principle and the Anisotropic Convex Lorentz-Sobolev Inequality

An anisotropic convex Lorentz-Sobolev inequality is established, which extends Ludwig, Xiao, and Zhang's result to any norm from Euclidean norm, and the geometric analogue of this inequality is given. In addition, it implies that the (anisotropic) Pólya-Szegö principle is shown.

Detalles Bibliográficos
Autores principales: Liu, Shuai, He, Binwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124251/
https://www.ncbi.nlm.nih.gov/pubmed/25136698
http://dx.doi.org/10.1155/2014/875245
Descripción
Sumario:An anisotropic convex Lorentz-Sobolev inequality is established, which extends Ludwig, Xiao, and Zhang's result to any norm from Euclidean norm, and the geometric analogue of this inequality is given. In addition, it implies that the (anisotropic) Pólya-Szegö principle is shown.