Cargando…
The Pólya-Szegö Principle and the Anisotropic Convex Lorentz-Sobolev Inequality
An anisotropic convex Lorentz-Sobolev inequality is established, which extends Ludwig, Xiao, and Zhang's result to any norm from Euclidean norm, and the geometric analogue of this inequality is given. In addition, it implies that the (anisotropic) Pólya-Szegö principle is shown.
Autores principales: | Liu, Shuai, He, Binwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124251/ https://www.ncbi.nlm.nih.gov/pubmed/25136698 http://dx.doi.org/10.1155/2014/875245 |
Ejemplares similares
-
The affine Pólya–Szegö principle: Equality cases and stability()
por: Wang, Tuo
Publicado: (2013) -
On a class of N-dimensional anisotropic Sobolev inequalities
por: Huang, Lirong, et al.
Publicado: (2018) -
Fekete-Szegö Inequalities for Certain Classes of Biunivalent Functions
por: Altınkaya, Şahsene, et al.
Publicado: (2014) -
The general class of Wasserstein Sobolev spaces: density of cylinder functions, reflexivity, uniform convexity and Clarkson’s inequalities
por: Sodini, Giacomo Enrico
Publicado: (2023) -
Inequalities Based on Sobolev Representations
por: Anastassiou, George A
Publicado: (2011)