Cargando…

On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums

For any fixed integer k ≥ 2 and integer r with (r, p) = 1, it is clear that there exist k integers 1 ≤ a (i) ≤ p − 1 (i = 1, 2, …, k) such that a (1) a (2) ⋯ a (k) ≡ r mod p. Let N(k, r; p) denote the number of all (a (1), a (2), ⋯ a (k)) such that a (1) a (2) ⋯ a (k) ≡ r mod p and 2†(a (1) + a (2)...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Guohui, Zhang, Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124714/
https://www.ncbi.nlm.nih.gov/pubmed/25133256
http://dx.doi.org/10.1155/2014/726053
Descripción
Sumario:For any fixed integer k ≥ 2 and integer r with (r, p) = 1, it is clear that there exist k integers 1 ≤ a (i) ≤ p − 1 (i = 1, 2, …, k) such that a (1) a (2) ⋯ a (k) ≡ r mod p. Let N(k, r; p) denote the number of all (a (1), a (2), ⋯ a (k)) such that a (1) a (2) ⋯ a (k) ≡ r mod p and 2†(a (1) + a (2) + ⋯ + a (k)). In this paper, we will use the analytic method and the estimate for high-dimension Kloosterman sums to study the asymptotic properties of N(k, r; p) and give two interesting asymptotic formulae for it.