Cargando…

On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums

For any fixed integer k ≥ 2 and integer r with (r, p) = 1, it is clear that there exist k integers 1 ≤ a (i) ≤ p − 1 (i = 1, 2, …, k) such that a (1) a (2) ⋯ a (k) ≡ r mod p. Let N(k, r; p) denote the number of all (a (1), a (2), ⋯ a (k)) such that a (1) a (2) ⋯ a (k) ≡ r mod p and 2†(a (1) + a (2)...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Guohui, Zhang, Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124714/
https://www.ncbi.nlm.nih.gov/pubmed/25133256
http://dx.doi.org/10.1155/2014/726053
_version_ 1782329662581506048
author Chen, Guohui
Zhang, Han
author_facet Chen, Guohui
Zhang, Han
author_sort Chen, Guohui
collection PubMed
description For any fixed integer k ≥ 2 and integer r with (r, p) = 1, it is clear that there exist k integers 1 ≤ a (i) ≤ p − 1 (i = 1, 2, …, k) such that a (1) a (2) ⋯ a (k) ≡ r mod p. Let N(k, r; p) denote the number of all (a (1), a (2), ⋯ a (k)) such that a (1) a (2) ⋯ a (k) ≡ r mod p and 2†(a (1) + a (2) + ⋯ + a (k)). In this paper, we will use the analytic method and the estimate for high-dimension Kloosterman sums to study the asymptotic properties of N(k, r; p) and give two interesting asymptotic formulae for it.
format Online
Article
Text
id pubmed-4124714
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-41247142014-08-17 On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums Chen, Guohui Zhang, Han ScientificWorldJournal Research Article For any fixed integer k ≥ 2 and integer r with (r, p) = 1, it is clear that there exist k integers 1 ≤ a (i) ≤ p − 1 (i = 1, 2, …, k) such that a (1) a (2) ⋯ a (k) ≡ r mod p. Let N(k, r; p) denote the number of all (a (1), a (2), ⋯ a (k)) such that a (1) a (2) ⋯ a (k) ≡ r mod p and 2†(a (1) + a (2) + ⋯ + a (k)). In this paper, we will use the analytic method and the estimate for high-dimension Kloosterman sums to study the asymptotic properties of N(k, r; p) and give two interesting asymptotic formulae for it. Hindawi Publishing Corporation 2014 2014-07-16 /pmc/articles/PMC4124714/ /pubmed/25133256 http://dx.doi.org/10.1155/2014/726053 Text en Copyright © 2014 G. Chen and H. Zhang. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Chen, Guohui
Zhang, Han
On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums
title On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums
title_full On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums
title_fullStr On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums
title_full_unstemmed On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums
title_short On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums
title_sort on the generalization of lehmer problem and high-dimension kloosterman sums
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124714/
https://www.ncbi.nlm.nih.gov/pubmed/25133256
http://dx.doi.org/10.1155/2014/726053
work_keys_str_mv AT chenguohui onthegeneralizationoflehmerproblemandhighdimensionkloostermansums
AT zhanghan onthegeneralizationoflehmerproblemandhighdimensionkloostermansums