Cargando…
On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums
For any fixed integer k ≥ 2 and integer r with (r, p) = 1, it is clear that there exist k integers 1 ≤ a (i) ≤ p − 1 (i = 1, 2, …, k) such that a (1) a (2) ⋯ a (k) ≡ r mod p. Let N(k, r; p) denote the number of all (a (1), a (2), ⋯ a (k)) such that a (1) a (2) ⋯ a (k) ≡ r mod p and 2†(a (1) + a (2)...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124714/ https://www.ncbi.nlm.nih.gov/pubmed/25133256 http://dx.doi.org/10.1155/2014/726053 |
_version_ | 1782329662581506048 |
---|---|
author | Chen, Guohui Zhang, Han |
author_facet | Chen, Guohui Zhang, Han |
author_sort | Chen, Guohui |
collection | PubMed |
description | For any fixed integer k ≥ 2 and integer r with (r, p) = 1, it is clear that there exist k integers 1 ≤ a (i) ≤ p − 1 (i = 1, 2, …, k) such that a (1) a (2) ⋯ a (k) ≡ r mod p. Let N(k, r; p) denote the number of all (a (1), a (2), ⋯ a (k)) such that a (1) a (2) ⋯ a (k) ≡ r mod p and 2†(a (1) + a (2) + ⋯ + a (k)). In this paper, we will use the analytic method and the estimate for high-dimension Kloosterman sums to study the asymptotic properties of N(k, r; p) and give two interesting asymptotic formulae for it. |
format | Online Article Text |
id | pubmed-4124714 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-41247142014-08-17 On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums Chen, Guohui Zhang, Han ScientificWorldJournal Research Article For any fixed integer k ≥ 2 and integer r with (r, p) = 1, it is clear that there exist k integers 1 ≤ a (i) ≤ p − 1 (i = 1, 2, …, k) such that a (1) a (2) ⋯ a (k) ≡ r mod p. Let N(k, r; p) denote the number of all (a (1), a (2), ⋯ a (k)) such that a (1) a (2) ⋯ a (k) ≡ r mod p and 2†(a (1) + a (2) + ⋯ + a (k)). In this paper, we will use the analytic method and the estimate for high-dimension Kloosterman sums to study the asymptotic properties of N(k, r; p) and give two interesting asymptotic formulae for it. Hindawi Publishing Corporation 2014 2014-07-16 /pmc/articles/PMC4124714/ /pubmed/25133256 http://dx.doi.org/10.1155/2014/726053 Text en Copyright © 2014 G. Chen and H. Zhang. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chen, Guohui Zhang, Han On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums |
title | On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums |
title_full | On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums |
title_fullStr | On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums |
title_full_unstemmed | On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums |
title_short | On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums |
title_sort | on the generalization of lehmer problem and high-dimension kloosterman sums |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124714/ https://www.ncbi.nlm.nih.gov/pubmed/25133256 http://dx.doi.org/10.1155/2014/726053 |
work_keys_str_mv | AT chenguohui onthegeneralizationoflehmerproblemandhighdimensionkloostermansums AT zhanghan onthegeneralizationoflehmerproblemandhighdimensionkloostermansums |