Cargando…
Subclass-based multi-task learning for Alzheimer's disease diagnosis
In this work, we propose a novel subclass-based multi-task learning method for feature selection in computer-aided Alzheimer's Disease (AD) or Mild Cognitive Impairment (MCI) diagnosis. Unlike the previous methods that often assumed a unimodal data distribution, we take into account the underly...
Autores principales: | Suk, Heung-II, Lee, Seong-Whan, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124798/ https://www.ncbi.nlm.nih.gov/pubmed/25147522 http://dx.doi.org/10.3389/fnagi.2014.00168 |
Ejemplares similares
-
Integrative analysis of multi-dimensional imaging genomics data for Alzheimer's disease prediction
por: Zhang, Ziming, et al.
Publicado: (2014) -
Diagnosis of Autism Spectrum Disorder Using Central-Moment Features From Low- and High-Order Dynamic Resting-State Functional Connectivity Networks
por: Zhao, Feng, et al.
Publicado: (2020) -
A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer’s Disease Diagnosis
por: An, Le, et al.
Publicado: (2017) -
Genotype-phenotype association study via new multi-task learning model
por: Huo, Zhouyuan, et al.
Publicado: (2018) -
Multi-Task Learning Based Network Embedding
por: Wang, Shanfeng, et al.
Publicado: (2020)