Cargando…
Features Extraction of Flotation Froth Images and BP Neural Network Soft-Sensor Model of Concentrate Grade Optimized by Shuffled Cuckoo Searching Algorithm
For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the c...
Autores principales: | Wang, Jie-sheng, Han, Shuang, Shen, Na-na, Li, Shu-xia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124801/ https://www.ncbi.nlm.nih.gov/pubmed/25133210 http://dx.doi.org/10.1155/2014/208094 |
Ejemplares similares
-
The Challenge of Tungsten Skarn Processing by Froth Flotation: A Review
por: Foucaud, Yann, et al.
Publicado: (2020) -
Froth Flotation of Chalcopyrite/Pyrite Ore: A Critical Review
por: Castellón, César I., et al.
Publicado: (2022) -
Thiol-Silylated
Cellulose Nanocrystals as Selective
Biodepressants in Froth Flotation
por: Ludovici, Feliciana, et al.
Publicado: (2023) -
Emerging
Trends of Computational Chemistry and Molecular
Modeling in Froth Flotation: A Review
por: Alizadeh Sahraei, Abolfazl, et al.
Publicado: (2023) -
An Effective Hybrid Cuckoo Search Algorithm with Improved Shuffled Frog Leaping Algorithm for 0-1 Knapsack Problems
por: Feng, Yanhong, et al.
Publicado: (2014)