Cargando…

SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of Tumor Evolution

The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all...

Descripción completa

Detalles Bibliográficos
Autores principales: Miller, Christopher A., White, Brian S., Dees, Nathan D., Griffith, Malachi, Welch, John S., Griffith, Obi L., Vij, Ravi, Tomasson, Michael H., Graubert, Timothy A., Walter, Matthew J., Ellis, Matthew J., Schierding, William, DiPersio, John F., Ley, Timothy J., Mardis, Elaine R., Wilson, Richard K., Ding, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125065/
https://www.ncbi.nlm.nih.gov/pubmed/25102416
http://dx.doi.org/10.1371/journal.pcbi.1003665
_version_ 1782329717549957120
author Miller, Christopher A.
White, Brian S.
Dees, Nathan D.
Griffith, Malachi
Welch, John S.
Griffith, Obi L.
Vij, Ravi
Tomasson, Michael H.
Graubert, Timothy A.
Walter, Matthew J.
Ellis, Matthew J.
Schierding, William
DiPersio, John F.
Ley, Timothy J.
Mardis, Elaine R.
Wilson, Richard K.
Ding, Li
author_facet Miller, Christopher A.
White, Brian S.
Dees, Nathan D.
Griffith, Malachi
Welch, John S.
Griffith, Obi L.
Vij, Ravi
Tomasson, Michael H.
Graubert, Timothy A.
Walter, Matthew J.
Ellis, Matthew J.
Schierding, William
DiPersio, John F.
Ley, Timothy J.
Mardis, Elaine R.
Wilson, Richard K.
Ding, Li
author_sort Miller, Christopher A.
collection PubMed
description The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy.
format Online
Article
Text
id pubmed-4125065
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41250652014-08-12 SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of Tumor Evolution Miller, Christopher A. White, Brian S. Dees, Nathan D. Griffith, Malachi Welch, John S. Griffith, Obi L. Vij, Ravi Tomasson, Michael H. Graubert, Timothy A. Walter, Matthew J. Ellis, Matthew J. Schierding, William DiPersio, John F. Ley, Timothy J. Mardis, Elaine R. Wilson, Richard K. Ding, Li PLoS Comput Biol Research Article The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy. Public Library of Science 2014-08-07 /pmc/articles/PMC4125065/ /pubmed/25102416 http://dx.doi.org/10.1371/journal.pcbi.1003665 Text en © 2014 Miller et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Miller, Christopher A.
White, Brian S.
Dees, Nathan D.
Griffith, Malachi
Welch, John S.
Griffith, Obi L.
Vij, Ravi
Tomasson, Michael H.
Graubert, Timothy A.
Walter, Matthew J.
Ellis, Matthew J.
Schierding, William
DiPersio, John F.
Ley, Timothy J.
Mardis, Elaine R.
Wilson, Richard K.
Ding, Li
SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of Tumor Evolution
title SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of Tumor Evolution
title_full SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of Tumor Evolution
title_fullStr SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of Tumor Evolution
title_full_unstemmed SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of Tumor Evolution
title_short SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of Tumor Evolution
title_sort sciclone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125065/
https://www.ncbi.nlm.nih.gov/pubmed/25102416
http://dx.doi.org/10.1371/journal.pcbi.1003665
work_keys_str_mv AT millerchristophera scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT whitebrians scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT deesnathand scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT griffithmalachi scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT welchjohns scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT griffithobil scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT vijravi scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT tomassonmichaelh scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT grauberttimothya scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT waltermatthewj scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT ellismatthewj scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT schierdingwilliam scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT dipersiojohnf scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT leytimothyj scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT mardiselainer scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT wilsonrichardk scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT dingli scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution